Recommender Systems

Prem Melville andVikas Sindhwani
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
{pmelvil,vsindhw}@us.ibm.com

1 Definition

The goal of a Recommender System is to generate meaningrhreendations
to a collection of users for items or products that mightnesé them. Sugges-
tions for books on Amazon, or movies on Netflix, are real weskdmples of the
operation of industry-strength recommender systems. €kggd of such recom-
mendation engines depends on the domain and the partitwaeacteristics of the
data available. For example, movie watchers on Netflix fesdy provide rat-
ings on a scale of 1 (disliked) to 5 (liked). Such a data sotgcerds the quality
of interactions between users and items. Additionally,9yem may have ac-
cess to user-specific and item-specific profile attributel si8 demographics and
product descriptions respectively. Recommender systeffes @i the way they
analyze these data sources to develop notions of affinitydsst users and items
which can be used to identify well-matched paiGollaborative Filtering sys-
tems analyze historical interactions alone, wi@lertentbasedriltering systems
are based on profile attributes; and Hybrid techniques attemcombine both of
these designs. The architecture of recommender systenth@in@valuation on
real-world problems is an active area of research.

2 Motivation and Background

Obtaining recommendations from trusted sources is a akiiomponent of the
natural process of human decision making. With burgeonamgemerism buoyed
by the emergence of the web, buyers are being presentedmiticiezasing range
of choices while sellers are being faced with the challerfgeeosonalizing their



advertising efforts. In parallel, it has become common faegprises to collect
large volumes of transactional data that allows for deepalyais of how a cus-
tomer base interacts with the space of product offeringsoRetender Systems
have evolved to fulfill the natural dual need of buyers anteseby automating
the generation of recommendations based on data analysis.

The term “collaborative filtering” was introduced in the text of the first
commercial recommender system, called Tapestry[9], wvaf designed to rec-
ommend documents drawn from newsgroups to a collection éfsusThe mo-
tivation was to leverage social collaboration in order teveint users from get-
ting inundated by a large volume of streaming documents.aBofitive filtering,
which analyzes usage data across users to find well matcleedters pairs, has
since been juxtaposed against the older methodology oenobfittering which
had its original roots in information retrieval. In contditiering, recommenda-
tions are not “collaborative” in the sense that suggestinade to a user do not
explicitly utilize information across the entire user-eaSome early successes of
collaborative filtering on related domains included the @lcens system [29].

As noted in [4], initial formulations for recommender systewere based on
straightforward correlation statistics and predictivedeling, not engaging the
wider range of practices in statistics and machine learhitegature. The col-
laborative filtering problem was mapped to classificatiohicl allowed dimen-
sionality reduction techniques to be brought into play tpriave the quality of the
solutions. Concurrently, several efforts attempted to dombontent-based meth-
ods with collaborative filtering, and to incorporate adzhtl domain knowledge
in the architecture of recommender systems.

Further research was spurred by the public availabilityatdgets on the web,
and the interest generated due to direct relevance to e-eotemNetflix, an on-
line streaming video and DVD rental service, released alample dataset con-
taining 100 million ratings given by about half-a-milliorsers to thousands of
movie titles, and announced an open competition for the tatiborative fil-
tering algorithm in this domain. Matrix Factorization [3&chniques rooted in
numerical linear algebra and statistical matrix analysieged as a state of the
art technique.

Currently, Recommender Systems remain an active area ofrcesedth a
dedicated ACM conference, intersecting several sub-disempof statistics, ma-
chine learning, data mining and information retrievals. pAgations have been
pursued in diverse domains ranging from recommending wggsp@ music, books,
movies and other consumer products.
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Figure 1: User ratings matrix, where each oegll corresponds to the rating of
usery for item:. The task is to predict the missing rating; for the active usei.

3 Structure of Learning System

The most general setting in which recommender systems @adleedtis presented

in Figure 1. Known user preferences are represented as &mofhir users and

m items, where each cel|,; corresponds to the rating given to itérhy the user

u. This user ratings matrixs typically sparse, as most users do not rate most
items. Therecommendation task to predict what rating a user would give to a
previously unrated item. Typically, ratings are predidiadall items that have not
been observed by a user, and the highest rated items araf@egss recommen-
dations. The user under current consideration for recordatems is referred to
as theactive user

The myriad approaches to Recommender Systems can be bredeliypdzed as

e Collaborative Filtering (CF) In CF systems a user is recommended items
based on the past ratings of all users collectively.

e Content-based recommendinithese approaches recommend items that are
similar in content to items the user has liked in the past, atcimed to
attributes of the user.

¢ Hybrid approachesThese methods combine both collaborative and content-
based approaches.



3.1 Collaborative Filtering

Collaborative Filtering (CF) systems work by collecting ussdback in the form
of ratings for items in a given domain and exploiting sinitias in rating be-
haviour amongst several users in determining how to recamdnaa item. CF
methods can be further sub-divided imeighborhood-basednd model-based
approaches. Neighborhood-based methods are also comraterhed to asnemory-
basedapproaches [5].

3.1.1 Neighborhood-based Collaborative Filtering

In neighborhood-based techniques, a subset of users asercthased on their
similarity to the active user, and a weighted combinatiothefr ratings is used to
produce predictions for this user. Most of these approacae®e generalized by
the algorithm summarized in the following steps:

1. Assign a weight to all users with respect to similarityhtite active user.

2. Selectk users that have the highest similarity with the active useom-
monly called theneighborhood

3. Compute a prediction from a weighted combination of thetet neigh-
bors’ ratings.

In step1, the weightw, , is a measure of similarity between the useand
the active uset. The most commonly used measure of similarity is the Pearson
correlation coefficient between the ratings of the two uf209§ defined below:

o Zie[ (ra,i - Fa)(ruj - Fu)
au —
\/Ziel (rai — Fa)2 > ier (Tui — FU>2

where! is the set of items rated by both users,; is the rating given to item by
useru, andr, is the mean rating given by user

In step3, predictions are generally computed as the weighted aserbdevi-
ations from the neighbor’s mean, as in:

w,

(1)

Dai =T + ZuEK (ru,i - Fu) X wa,u
ai — la

(2)
ZUGK w(z,’u,
wherep, ; is the prediction for the active userfor item ¢, w,,, is the similarity
between users andu, andK is the neighborhood or set of most similar users.
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Similarity based on Pearson correlation measures thetawtesnich there is a
linear dependence between two variables. Alternativelg, @an treat the ratings
of two users as a vector in an-dimensional space, and compute similarity based
on the cosine of the angle between them, given by:

_ Ty« Ty _ D imt TaiTu
[7all2 X [|17ul]2 \/Z;Zl T?m‘\/z:il Th

When computing cosine similarity, one cannot have negaétiags, and unrated
items are treated as having a rating of zero. Empirical etufb] have found
that Pearson correlation generally performs better. Thave been several other
similarity measures used in the literature, includBygearman rank correlatign
Kendall's  correlation, mean squared differencesntropy andadjusted cosine
similarity [36, 12].

3)

W = COS(Ty, Ty)

Below we discuss several extensions to neighborhood-basedli¢h have led
to improved performance.

Item-based Collaborative Filtering: When applied to millions of users and
items, conventional neighborhood-based CF algorithms tsaade well, because
of the computational complexity of the search for similagnss As a alternative,
Linden et al. [20] proposeitiem-to-itemCollaborative Filtering where rather than
matching similar users, they match a user’s rated itemandasiitems. In prac-
tice, this approach leads to faster online systems, and oftgults in improved
recommendations [31, 20].

In this approach similarities between pairs of itenad; are computed off-
line using Pearson correlation, given by:

_ ZuEU (Tui — 7i) (Tug — T5)

V2ouev Tui = T)* /2 uer (Tug — 75)?
whereU is the set of all users who have rated both itéraady, r, ; is the rating
of useru on items, andr; is the average rating of théh item across users.

Now, the rating for itemi for usera can be predicted using a simple weighted
average, as in:

(4)

Wi j

_ > jek Ta Wiy
Pai= =~ T (5)
ZjeK |wigl
whereK is the neighborhood set of tiietems rated by: that are most similar to
i.



For item-based Collaborative Filtering too, one may usearadtéve similari-
ties metrics such aadjusted cosine similarityA good empirical comparison of
variations of item-based methods can be found in [31].

Significance Weighting: It is common for the active user to have highly corre-
lated neighbors that are based on very few co-rated (oyarigpitems. These
neighbors based on a small number of overlapping items e tad predic-
tors. One approach to tackle this problem is to multiply tineilarity weight by

a Significance Weightinfactor, which devalues the correlations based on few co-
rated items [12].

Default Voting: An alternative approach to dealing with correlations based
very few co-rated items, is to assume a default value fordkiag for items that
have not been explicitly rated. In this way we can now compateelation (Eq. 1)
using the union of items rated by users being matcligd I, ), as opposed to the
intersection. Such default votingstrategy has been shown to improve Collabo-
rative Filtering by Breese et al. [5].

Inverse User Frequency: When measuring the similarity between users, items
that have been rated by all (and universally liked or disl)kare not as useful as
less common items. To account for this Breese et al. [5] intted the notion

of inverse user frequencwhich is computed ag; = logn/n;, wheren; is the
number of users who have rated itéwut of the total number ot users. To apply
inverse user frequency while using similarity-based CF wedform the original
rating fori by multiplying it by the factorf;. The underlying assumption of this
approach is that items that are universally loved or hatedaded more frequently
than others.

Case Amplification: In order to favor users with high similarity to the active
user, Breese et al. [5] introducedse amplificationvhich transforms the original
weights in Eq. 2 to

/

w = Wquy * ’wa,u

P~
a,u

wherep is the amplification factor, and > 1.

Other notable extensions to similarity-based Collaboedtntering includeveighted
majority prediction[23] andimputation-boosted CE37].



3.1.2 Model-based Collaborative Filtering

Model-based techniques provide recommendations by dastignparameters of
statistical models for user ratings. For example, [4] dbscan early approach
to map CF to a classification problem, and build a classifieetmh active user
representing items as feature vectors over users and lateartaings as labels,
possibly in conjunction with dimensionality reduction heques to overcome
data sparsity issues. Other predictive modeling techsityage also been applied
in closely related ways.

More recentlylatentfactor andmarix factorization models have emerged as
a state of the art methodology in this class of techniqueg [3alike neighbor-
hood based methods that generate recommendations basttistical notions
of similarity between users, or between items, Latent Faotdels assume that
the similarity between users and items is simultaneouslyéed by some hidden
lower-dimensional structure in the data. For example, élieg that a user gives
to a movie might be assumed to depend on few implicit factoch s1s the user’s
taste across various movie genres. Matrix factorizatichrigues are a class of
widely successful Latent Factor models where users angitegesimultaneously
represented as unknown feature vectors (column vectars); € R* alongk
latent dimensions. These feature vectors are learnt sdrthet productsu? i,
approximate the known preference ratimgs with respect to some loss measure.
The squared loss is a standard choice for the loss functiomhich case the fol-
lowing objective function is minimized,

JOW, H {b}osy b)) = D (rus — wihi)’ (6)

(ug)eL

whereW = [w; ... w,]T isann x k matrix, H = [hy ... h,,] is ak x m matrix
andL is the set of user-item pairs for which the ratings are kndwihe imprac-
tical limit where all user-item ratings are known, the abo¥bgective function is
J(W,H) = ||[R — WH]||},, where R denotes the: x m fully-known user-item
matrix. The solution to this problem1 is given bly taking thenicated SVD ofRz,

R = UDV?T and settingh = U,D?, H = D2V’ whereUy, Dy, V;. contain
the k largest singular triplets o2. However, in the realistic setting where the
majority of user-item ratings are unknown, such a nice dlglmgptimal solution
cannot be directly obtained, and one has to explicitly o@tnhe non-convex
objective function/(W, H). Note that in this case, the objective function is a
particular form of weighted loss, i.e/(W, H) = ||S © (R — W H)||3,, where®
denotes elementwise products, &t a binary matrix that equalsover known
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user-item paird,, and0 otherwise. Therefore, weighted low-rank approximations
are pertinent to this discussion [34]. Standard optimirafprocedures include
gradient-based techniques, or procedures like altegnbgast squares whereé is
solved keepindgV fixed and vice-versa until a convergence criterion is satisfi
Note that fixing eithedV or H turns the problem of estimating the other into a
weightedlinearregresion task. In order to avoid learning a model that overfits,
it is common to minimize the objective function in the preseofregularization
terms,J (W, H) +~||W||>+ \||H||?, wherey, \ are regularization parameters that
can be determined by cross-validation. OfEeH are learnt, the produdl’ H
provides an approximate reconstruction of the rating mdtdm where recom-
mendations can be directly read off.

Different choices of loss functions, regularizers and addal model con-
straints have generated a large body of literature on médtorization tech-
niques. Arguably, for discrete ratings, the squared los®isthe most natural
loss function. The maximum margin matrix factorization][aBproach uses mar-
gin based loss functions such as the hinge loss us&{/M classification, and
its ordinal extensions for handling multiple ordered rgtrategories. For rat-
ings that span ovek values, this reduces to finding — 1 thresholds that di-
vide the real line into consecutive intervals specifyingng bins to which the
output is mapped, with a penalty for insufficient margin gba@tion. Rennie
and Srebro [28] suggest a nhon-linear Conjugate Gradientitligoto minimize a
smoothed version of this objective function.

Another class of techniques is the Non-negative Matrix éiézation popu-
larized by the work of Lee and Seung [19] where non-neggtisiinstraints are
imposed onlV, H. There are weighted extensions of NMF that can be applied
to recommendation problems. The rating behaviour of eaehmsay be viewed
as being a manifestation of different roles, e.g., a contioosof prototypical be-
haviour in clusters of users bound by interests or communityus, the ratings
of each user are an additive sum of basis vectors of ratintigiitem space. By
disallowing subtractive basis, non-negativity constiaiend a part-based inter-
pretation to the model. NMF can be solved with a variety o§lasctions, but
with the generalized KL-divergence loss defined as follows,

T
- Tu,i + wu hz

JW.H)=>r,;log

u,i€L

ru,i

NMF is in fact essentially equivalent to Probabilistic Latt&Semantic Analysis
(pLSA) which has also previously been used for Collabordiltering tasks [14].



The recently concluded million-dollar Netflix competitibas catapulted ma-
trix factorization techniques to the forefront of recommentechnologies in col-
laborative filtering settings [38]. While the final winninglston was a complex
ensemble of different models, several enhancements to tredrix factorization
models were found to lead to improvements. These included:

1. The use of additional user-specific and item-specific rpatarsb,,, b; to
account for systematic biases in the ratings such as popubaies re-
ceiving higher ratings on average. The objective functsothen modified
as:J(W,H) = Z(w’)EL (rw — b, —b; — 7 — wg’hi)Q wherer denotes the
mean overall rating.

2. Incorporating temporal dynamics of rating behaviourftydducing time-
dependent variables:

JOWH) = 3 (raalt) = bult) = bilt) = 7 = w (t)}:)”

(u,8)€L

wheret denotes a time-stamp amtl includes time-dependent user dimen-
sions.

In many settings, only implicit preferences are availab$eopposed to explicit
like-dislike ratings. For example, large business orgations typically meticu-
lously record transactional details of products purchdsetheir clients. This is
a one-class setting since the business domain knowledgeeftive examples
that a client has no interest in buying a product ever in theréu is typically
not available explicitly in corporate databases. Moreosech knowledge is dif-
ficult to gather and maintain in the first place, given theabpthanging business
environment. Another example is recommending TV showsdasewatching
habits of users, where preferences are implicit in what fegsichose to see with-
out any source of explicit ratings. Recently, matrix factation techniques have
been advanced to handle such problems [24] by formulatin§dence weighted
objective function,J(W, H) = 7, ) Cui (ru; — w}fhi)Q, under the assumption
that unobserved user-item pairs may be taken as negativepéss with a certain
degree of confidence specified vig;.

3.2 Content-based Recommending

Pure Collaborative Filtering recommenders only utilize tiser ratings matrix,
either directly, or to induce a collaborative model. Theppraaches treat all
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users and items as atomic units, where predictions are mébeuwregard to
the specifics of individual users or items. However, one cakara better per-
sonalized recommendation by knowing more about a user, asiclemographic
information [25], or about an item, such as the director agarg of a movie [21].
For instance, given movie genre information, and knowirad ghuser liked “Star
Wars” and “Blade Runner”, one may infer a predilection for &ceeFiction and
could hence recommend “Twelve Monkeys”. Content-basedmeoenders refer
to such approaches, that provide recommendations by camypa@presentations
of content describing an item to representations of coriteitinterests the user.
These approaches are sometimes also referreddordsnt-based filtering

Much research in this area has focused on recommending We&ma&ssoci-
atedtextualcontent, such as web-pages, books, and movies; where thpages
themselves or associated content like descriptions andegews are available.
As such, several approaches have treated this problem atoamation Retrieval
(IR) task, where the content associated with the user’s metes is treated as
a query, and the unrated documents are scored with relegandarity to this
guery [2]. In NewsWeeder [18], documents in each ratinggmateare converted
into tf-idf word vectors, and then averaged to get a prototype vectaadf eat-
egory for a user. To classify a new document, it is comparék @ach prototype
vector and given a predicted rating based on the cosinesgitygito each category.

An alternative to IR approaches, is to treat recommending @assification
task, where each example represents the content of an iteha aser’s past rat-
ings are used as labels for these examples. In the domairo&freoommending,
Mooney et al. [22] use text from fields such as the title, aytbynopses, reviews,
and subject terms, to train a multinomiedve Bayesclassifier. Ratings on a scale
of 1 to k can be directly mapped tb classes [21], or alternatively, the numeric
rating can be used to weight the training example in a praéiséibibinary classifi-
cation setting [22]. Other classification algorithms hale® &een used for purely
content-based recommending, includikgeaestneigtbor, decision trees, and
neual neworks [26].

3.3 Hybrid Approaches

In order to leverage the strengths of content-based analbaottive recommenders,
there have been several hybrid approaches proposed thairethe two. One
simple approach is to allow both content-based and colélverfiltering methods
to produce separate ranked lists of recommendations, anchtlierge their results
to produce a final list [8]. Claypool et al. [7] combine the twegictions using
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an adaptive weighted average, where the weight of the colidive component
increases as the number of users accessing an item increases

Melville et al. [21] proposed a general framework t@mtent-boosted Collab-
orative Filtering where content-based predictions are applied to converaiss
user ratings matrix into a full ratings matrix, and then a CRhod is used to pro-
vide recommendations. In particular, they use a/s@ayes classifier trained on
documents describing the rated items of each user, ancceefila unrated items
by predictions from this classifier. They use the resulfisgudo ratings matrix
to find neighbors similar to the active user, and produceiptieds using Pear-
son correlation, appropriately weighted to account foiloWerlap of actually rated
items, and for the active user’s content predictions. Tpm@ach has been shown
to perform better than pure Collaborative Filtering, purateat-based systems,
and a linear combination of the two. Within this content-steol CF framework,
Su et al. [35] demonstrated improved results using a stroogaent-predictor,
TAN-ELR, and unweighted Pearson Collaborative Filtering.

Several other hybrid approaches are based on tradition&liooative Filter-
ing, but also maintain a content-based profile for each usese content-based
profiles, rather than co-rated items, are used to find simgars. In Pazzani’'s
approach [25], each user-profile is represented by a vetteeighted words de-
rived from positive training examples using the Winnow aition. Predictions
are made by applying CF directly to the matrix of user-profjessopposed to the
user-ratings matrix). An alternative approach, Fab [2¢suzlevance feedback to
simultaneously mold a personal filter along with a commut@pbit” filter. Doc-
uments are initially ranked by the topic filter and then sena tuser’s personal
filter. The user’s relevance feedback is used to modify bwtpersonal filter and
the originating topic filter. Good et al. [10] use collabaratfiltering along with
a number of personalized information filtering agents. Rtexhs for a user are
made by applying CF on the set of other users and the activés psgsonalized
agents.

Several hybrid approaches treat recommending as a classifidask, and
incorporate collaborative elements in this task. Basu gBhlseRipper, arule
indudion system, to learn a function that takes a user and mowiepaedicts
whether the movie will be liked or disliked. They combine labbrative and
content information, by creating features suck@asedies liked by usandusers
who liked movies of genre. ¥h other work, Soboroff and Nicholas [33] multiply
aterm-document matrisepresenting all item content with the user-ratings matrix
to produce aontent-profile matrix Using Latent Semantic Indexing, a rahk-
approximation of the content-profile matrix is computed.rnfesectors of the
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user’s relevant documents are averaged to produce a usefike p Then, new
documents are ranked against each user’s profile in the l28kesp

Some hybrid approaches attempt to directly combine coraedtcollabora-
tive data under a single probabilistic framework. Popestudl. [27] extended
Hofmann’saspect moddlL5] to incorporate three-way co-occurrence data among
users, items, and item content. Their generative modehassthat users select
latent topics, and documents and their content words arergtsd from these
topics. Schein et al. [32] extend this approach, and focusaking recommen-
dations for items that have not been rated by any user.

3.4 Evaluation Metrics

The quality of a recommender system can be evaluated by sorgpacommen-
dations to a test set of known user ratings. These systentgmcal measured
using predictive accuracy metricgl3], where the predicted ratings are directly
compared to actual user ratings. The most commonly usedcniretthe litera-
ture isMeanAbsdute Error (MAE) — defined as the average absolute difference
between predicted ratings and actual ratings, give by:

Z{u,i} |Pui = Tusil
¥ ()
Wherep,, ; is the predicted rating for useron items, r,, ; is the actual rating, and
N is the total number of ratings in the test set.
A related commonly-used metriQoot Mean SquaredError (RMSE), puts
more emphasis on larger absolute errors, and is given by:

i ui — T 2
RMSE = \/ 2uy (P N ) (8)

Predictive accuracy metrics treat all items equally. Hasvefor most recom-
mender systems we are primarily concerned with accuratelgigting the items
a user will like. As such, researchers often view recommanais predicting
good i.e. items with high ratings versumd or poorly-rated items. In the con-
text of Information Retrieval (IR), identifying the good frothe background of
bad items can be viewed as discriminating between “reléwamd “irrelevant”
items; and as such, standard IR measures Rileision, Recall andAreaUnder
theROCCurve(AUC) can be utilized. These, and several other measures, such as
F1-measurePearson’s product-moment correlatiokendall’'s 7, mean average

MAFE =
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precision half-life utility, andnormalized distance-based performance measure
are discussed in more detail by Herlocker et al. [13].

3.5 Challenges and Limitations

In this section, we present some of the common hurdles inoglefg Recom-
mender Systems, as well as some research directions thrasaddem.

Sparsity: Stated simply, most users do not rate most items and henceséheat-

ings matrix is typically very sparse. This is a problem forl&@bbrative Filtering

systems, since it decreases the probability of finding a fsesers with similar

ratings. This problem often occurs when a system has a vetyitem-to-user
ratio, or the system is in the initial stages of use. Thisessan be mitigated by
using additional domain information [21, 35] or making asgptions about the
data generation process that allows for high-quality irapan [37].

The Cold-start Problem: New items and new users pose a significant challenge
to recommender systems. Collectively these problems agereeffto as theold-
start problem[32]. The first of these problems arises in Collaborativeefitig
systems, where an item cannot be recommended unless someasseated it
before. This issue applies not only to new items, but alsdszore items, which
is particularly detrimental to users with eclectic tastéss such thenew-item
problemis also often referred to as tiest-rater problem Since content-based
approaches [22, 26] do not rely on ratings from other uséesy tan be used
to produce recommendations fall items, provided attributes of the items are
available. In fact, the content-based predictions of similsers can also be used
to further improve predictions for the active user [21].

Thenew-user problers difficult to tackle, since without previous preferences
of a user it is not possible to find similar users or to build ateat-based profile.
As such, research in this area has primarily focused ontefédg selecting items
to be rated by a user so as to rapidly improve recommendaéidonmance with
the least user feedback. In this setting, classical teciesidromactive learning
can be leveraged to address the task of item selection [16, 11

Fraud: As Recommender Systems are being increasingly adopted by emial
websites, they have started to play a significant role inctiffg the profitability
of sellers. This has led to many unscrupulous vendors engagdifferent forms
of fraud to game recommender systems for their benefit. &lgichey attempt
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to inflate the perceived desirability of their own produgiagh attacksor lower
the ratings of their competitorsigke attacks These types of attack have been
broadly studied ashilling attacks[17] or profile injection attack$6]. Such at-
tacks usually involve setting up dummy profiles, and assuiffiereint amounts
of knowledge about the system. For instance, dlierage attacf17] assumes
knowledge of the average rating for each item; and the attaag&signs values
randomly distributed around this average, along with a magng for the item
beingpushed.Studies have shown that such attacks can be quite detrimenta
predicted ratings, thougkem-basedCollaborative Filtering tends to be more ro-
bust to these attacks [17]. Obviously, content-based ndsthehich only rely on

a users past ratings, are unaffected by profile injecti@chst

While pure content-based methods avoid some of the pitfedtsidsed above,
Collaborative Filtering still has some key advantages ovent Firstly, CF can
perform in domains where there is not much content assaciaith items, or
where the content is difficult for a computer to analyze, sashdeas, opinions,
etc. Secondly, a CF system has the ability to provide seréadgprecommenda-
tions, i.e. it can recommend items that are relevant to tbe bsit do not contain
content from the user’s profile.

4 Recommended Reading

Good surveys of the literature in the field can be found in 885,1]. For extensive
empirical comparisons on variations of Collaborative Fittg refer to [12, 5, 31].
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Title: Collaborative Filtering
Definition

Collaborative Filtering (CF) refers to a class of techniquesduinrecommender
sydems, that recommend items to users that other users wiilasit@stes have

liked in the past. CF methods are commonly sub-divided mém@hborhood-
basedandmodel-base@pproaches. In neighborhood-based approaches, a subset
of users are chosen based on their similarity to the actiee, asd a weighted
combination of their ratings is used to produce predictimmghis user. In con-

trast, model-based approaches assume an underlyingus&tiatusers’ rating be-
havior, and induce predictive models based on the pasgsatihall users.

See Also:Recommender Systems
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Title: Content-based Filtering
Synonyms: Content-based Recommending

Definition

Content-based filtering is prevalent in Information Retriewdhere the text and
multimedia content of documents is used to select docunmel@gant to a user’s
guery. In the context aemmmendersydems, this refers to content-based recom-
menders, that provide recommendations by comparing rept&sons of content
describing an item to representations of content thatestera user.

See Also:Recommender Systems
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Title: Latent Factor Models and Matrix Factoriza-
tions

Definition

Latent Factor models are a state of the art methodology fatetoasedcol-
laborative filtering. The basic assumption is that there exist an unknown low-
dimensional representation of users and items where tesaraffinity can be
modeled accurately. For example, the rating that a uses ¢iva movie might be
assumed to depend on few implicit factors such as the usets aicross various
movie genres. Matrix factorization techniques are a cldssidely successful
Latent Factor models that attempt to find weighted low-ramgraximations to
the user-item matrix, where weights are used to hold outingssntries. There
is a large family of matrix factorization models based onicb®f loss function
to measure approximation quality, regularization termauoid overfitting, and
other domain-dependent formulations.

See Also:Recommender Systems
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