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ABSTRACT

We consider the problem of building compact, unsupervised
representations of large, high-dimensional, non-negative data
using sparse coding and dictionary learning schemes, with
an emphasis on executing the algorithm in a Map-Reduce
environment. The proposed algorithms may be seen as par-
allel optimization procedures for constructing sparse non-
negative factorizations of large, sparse matrices. Our ap-
proach alternates between a parallel sparse coding phase im-
plemented using greedy or convex (l1) regularized risk min-
imization procedures, and a sequential dictionary learning
phase where we solve a set of l0 optimization problems ex-
actly. These two-fold sparsity constraints lead to better sta-
tistical performance on text analysis tasks and at the same
time make it possible to implement each iteration in a single
Map-Reduce job. We detail our implementations and opti-
mizations that lead to the ability to factor matrices with
more than 100 million rows and billions of non-zero entries
in just a few hours on a small commodity cluster.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Performance, Experimentation

1. INTRODUCTION
Let us assume that we are given a collection of N data

points or signals in a high-dimensional space R
D: xi ∈

R
D, 1 ≤ i ≤ N . Let hj ∈ R

D, 1 ≤ j ≤ K denote a dic-
tionary of K “atoms”which we collect as rows of the matrix
H = (h1 . . .hK)T ∈ R

K×D. Given a suitable dictionary
H, the goal of sparse coding is to represent datapoints ap-
proximately as sparse linear combinations of atoms in the
dictionary, i.e., xi ≈

∑K

j=1 wijhj = HTwi, where the co-

efficient vector wi ∈ R
K typically only has a few non-zero

elements. Of course, the effectiveness of sparse coding in
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lending a high-quality compact representation to the entire
dataset depends on whether the data distribution concen-
trates around lower-dimensional subspaces, and crucially, on
whether the choice of the dictionary appropriately captures
this structure.

Spread over several decades, the quest for an appropri-
ate dictionary that is well-suited to a class of signals (e.g.
natural images) has generated a vast body of work in Signal
Processing and Computational Harmonic Analysis, encapsu-
lating the development of Fourier, DCT, Wavelets and other
bases, and matured into the establishment of impactful cod-
ing standards. Broadly speaking, in these efforts, dictionary
design centers around pre-specified mathematical functions
that are justified by optimality proofs and error bounds for
the class of signals they attempt to model.

An alternative to the aforementioned approach to mod-
eling is learning a dictionary [9] from the data itself. Led
by the emergence of the web, we are increasingly encounter-
ing new sources of data that more often than not are com-
pletely unstructured, very high-dimensional, and expectedly
voluminous. Dictionary learning now becomes appealing, as
large web-based repositories essentially provide unrestricted
samples of natural signals, thereby allowing one to bypass
the limitations of analytical formulations that are applica-
ble to restricted signal classes. However, to make dictionary
learning feasible, we are confronted with the formidable chal-
lenge of scaling associated algorithms to web-scale datasets.

Fortunately, the growing ubiquity of multi-core and clus-
ter systems potentially offers a solution. To make parallel
systems more accessible to machine learning researchers and
practitioners, recent years have seen the development and
adoption of the Map-Reduce (MR) programming model [7].
Map-Reduce programs, when deployed using engines like
Hadoop, can be executed on large clusters in a fault toler-
ant fashion. Higher-level declarative [11] and imperative [10]
programming frameworks to ease the implementation of learn-
ing algorithms on top of Map-Reduce have also been de-
veloped. This paper delves into the problem of carefully
designing and implementing large-scale sparse coding and
dictionary learning methods that afford efficient paralleliza-
tions on distributed computing environments like Hadoop.

We focus on text-like domains that generate very high-
dimensional, non-negative, and sparse data matrices. Our
framework may also be viewed as providing sparse Non-
negative Matrix Factorizations (NMF) [14, 12, 16]. Sparse
NMFs and dictionary learning on document collections has
recently emerged [13] as an appealing alternative to popular
Bayesian topic models such as the Latent Dirichlet Alloca-



tion [4]. In very recent work, [1] present the first theoreti-
cal results, under certain assumptions, on provably correct
NMF algorithms. For various extensions and applications of
NMFs, see [6].
Our contributions may be highlighted as follows: (1) We

describe highly efficient parallel algorithms for sparse cod-
ing and dictionary learning. These algorithms are imple-
mented using multithreading on a multi-core system and
the Map-Reduce programming model on a cluster-system.
A hallmark of the method is that it is possible to imple-
ment each iteration of the optimization algorithm using a
single Map-Reduce job. We note several recent efforts [18,
15, 17] on scaling up related algorithms. (2) Our algorithms
alternate between a distributed sparse coding phase and a
sequential in-memory dictionary learning phase. For sparse
coding, we organize non-negative variants of both Orthogo-
nal Matching Pursuit (OMP) and Lasso [9, 5] around very
efficient and light-weight updates. Our work lends a bet-
ter understanding of the strengths and weaknesses of greedy
versus convex methods in the context of parallel sparse non-
negative matrix factorizations, a natural comparison that
we have not seen reported elsewhere in the literature. (3) In
contrast to existing Sparse NMF methods, we also impose
hard sparsity constraints on the dictionary atoms. We ob-
serve that the related subproblem in coordinate descent can
be solved exactly. For textual problems, dictionary sparsity
imposes the natural statistical prior that meaningful top-
ics have support on only a small, distinctive set of words.
As a complimentary computational benefit, these dictionary
sparsity constraints also enable fast in-memory updates of
dictionary atoms. (4) We present empirical results on both
small and large problems on multi-core and cluster systems.
We show that datasets with more than 6 billion non-zero
entries - amongst the largest demonstrations of such tech-
niques - can be factored in a matter of hours on a moderately
sized cluster, exhibiting near linear scaling with respect to
data size, number of cores, and dictionary size.

2. FORMULATION
We are given N datapoints, {xi}

N
i=1,xi ∈ R

D, and H =

(h1 . . .hK)T ∈ R
K×D denotes the dictionary matrix com-

prising of K atoms which are optimization variables in the
dictionary learning problem. We denote the associated sparse
coding variables by {wi}

N
i=1,wi ∈ R

K and collect them as
rows of the matrix W = (w1 . . .wN )T . We will use wij to
denote the jth element of wi. We pose the following class of
joint optimization problems over W and H,

argmin
W,H

1

N

N
∑

i=1

‖xi −HTwi‖
2
2 + λ‖H−H0‖2fro (1)

subject to the following constraints:

wi ≥ 0 non-negative coding (2)

‖wi‖p ≤ γ sparse coding (3)

hj ≥ 0 non-negative dictionary (4)

‖hj‖q ≤ ν sparse dictionary (5)

‖hj‖
2
2 = 1 uniqueness (6)

where i runs from 1 to N , j runs from 1 to K, p = {0, 1},
q = 0, and λ, γ, ν are real-valued parameters.
The first term in the objective function above, Eqn 1,

measures the squared reconstruction error. It is known to

be non-convex in W and H. The second term is a regular-
izer that enforces the learnt dictionary to be close, in Frobe-
nius norm, to a prior H0, which may be available e.g., if
models are being learnt periodically over time (if H0 is not
available, λ may be set to 0). Equations 2,4 impose non-
negativity constraints. The constraint on ‖w‖p in Eqn 3
implements sparse coding by imposing a bound γ on a spar-
sity inducing norm ball: p = 0 casts this constraint in terms
of the l0 pseudo-norm, i.e., the number of non-zeros in wi

should not exceed γ, while p = 1 uses the l1 ball of radius γ
which is a convex set. Equation 5 imposes similar sparsity
constraints on the dictionary elements. We mainly restrict
our implementation to hard sparsity constraints, i.e., q = 0,
and bound the number of non-zeros per atom exactly by ν.
As we outline in section 4, the associated rank-one subprob-
lem can actually be solved exactly despite the intractability
of working with l0 norm in general. This allows us to apri-
ori control the memory requirements for maintaining H as
a sparse matrix and turn its updates across iterations into
very cheap sequential operations. Our approach therefore
enforces double sparsity in both the factors. Finally, for van-
ishing λ and sufficiently large values of γ, ν, it is easy to see
that the reconstruction error is invariant under the trans-
formation HTwi = HTQQ−1wi for any invertible K × K

scaling matrix Q, making the minimization ill-posed. In
particular, for clustering applications, it is common to as-
sign xi to the cluster argmaxj wij , which can be arbitrarily
changed by rescaling. We therefore require dictionary ele-
ments to have unit l2 norm; other constraint sets which are
convex can also be instead used [16].

Our optimization strategy is cyclic Block Coordinate De-
scent (BCD) [3]. Each iteration of the algorithm cycles over
the variables W and h1 . . .hK , optimizing a single variable
at a time while holding others fixed. It is easy to see that
since the objective function in Eqn. 1 is separable in {wi}

N
i=1,

i.e. rows of W, they can be optimized in parallel. We call
this the Parallel Sparse Coding phase of the algorithm:

parallel for i = 1 . . . N :

wi = argmin
w≥0,‖w‖p≤γ

‖xi −HTw‖22 (7)

In the next section, we outline non-negative variations of
Orthogonal Matching Pursuit and Lasso to solve these sub-
problems for p = 0 and p = 1 respectively.

In the Dictionary Learning phase of BCD, we cycle
sequentially over h1 . . .hK , i.e., rows of H, keeping W fixed
and solve the resulting subproblems. Due to hard spar-
sity constraints, as well as appropriate aggregations from
the sparse coding phase, we can guarantee that dictionary
variables can be conveniently held in memory as a sparse
matrix H, and manipulated very fast with efficient and ex-
act sequential updates as outlined in section 4. We declare
convergence if the overall mean reconstruction error fails to
improve significantly relative to its previous value.

In the most general non-convex optimization setting, limit
points of a BCD process may not be stationary points of the
objective function. Even for a stationary point, apriori theo-
retical guarantees concerning model quality typically cannot
be established. In practice though, such models nonetheless
often yield good solutions that turn out to provide valuable
empirical insight. We next describe the details of our ap-
proach.



3. NON-NEGATIVE SPARSE CODING
Without non-negativity constraints, for a fixed H, Eqn 7

is the classic least-squares sparse regression model, for which
greedy orthogonal matching pursuit (OMP) and Lasso are
two very well-studied and widely successful algorithmic frame-
works [9, 5], with intriguingly similar theoretical guarantees
concerning correctness.
Since the dictionary H is also varying in our setting, the

contrast between greedy and convex methods becomes par-
ticularly interesting for the following reasons. In each it-
eration, OMP greedily selects the atom that best helps in
reducing the current reconstruction residual. All the atoms
are then reoptimized. Lasso, on the other hand, requires
numerical optimization procedures, e.g. FISTA [2], that
can handle composite objectives with a smooth and a non-
differentiable component. Due to its simplicity, OMP tends
to be faster than Lasso. The per iteration complexity of
OMP involves greedy selection of an atom from upto K can-
didates, and solving a least squares system for refitting. For
Lasso, it involves taking the gradient of the objective and
adapting the line search stepsize. OMP, by design, converges
in no more than γ iterations while Lasso (using FISTA) con-
verges to an ε-optimal solution in O( 1√

ε
) iterations. One

advantage of OMP is that it imposes a predictable sparsity
structure on W and hence we know exact memory require-
ments upfront. However, in the context of the full BCD
algorithm, OMP-based sparse coding is not guaranteed to
converge (using currently available theoretical results) with-
out making assumptions on the dictionary at every iteration.
For sparse coding with Lasso (assuming q = 1 or ν = D, con-
vex uniqueness constraints and exact minimization), well-
known convergence results [3] imply that the full BCD al-
gorithm will show monotonic decrease and converge to a
stationary point. In practice though, OMP may still offer
consistent descent to a good solution. We also point out that
across BCD iterations, Lasso can utilize warm starts from
previously found solutions, while OMP essentially needs to
start from scratch. In a distributed setting, it is furthermore
worthwhile to investigate if OMP and Lasso offer different
load balancing characteristics.
These differences motivate us to study both OMP and

Lasso for sparse coding and dictionary learning, and bench-
mark them in a parallel environment. We next derive very
efficient implementations of non-negative versions of these
algorithms. For simplicity in the exposition below, we as-
sume that the data points are normalized to unit l2 norm,
i.e., ‖xi‖2 = 1.

3.1 Non-negative OMP (NOMP)
We are interested in solving argmin

w≥0,‖w‖0≤γ R(w) where

R(w) = ‖x−HTw‖22 denotes the reconstruction error. We
will express both Non-negative OMP (NOMP), and also
Non-negative Lasso(NLASSO) below, compactly in terms
of the following,

s = Hx and S = HHT (8)

where s may be interpreted as the vector of cosine similar-
ities between signals and dictionary atoms (since both dic-
tionary elements and data points are unit normalized) and
S is the (small) K×K matrix of inter-atom similarities. For
example note that the objective function can be written as,

R(w) = ‖x−HTw‖2 = ‖x‖2 − 2wT s+wTSw

= 1−wT (s+ u) where u = s− Sw (9)

Let A ⊆ {1 . . .K} denote the support of a candidate
solution w, i.e., A = {i : wi > 0}. NOMP starts with
w = 0, A = {} and builds the solution by greedily adding
variables that help reduce the current residual, r = x −
HTw = x −

∑

i∈A hiwi. We use Ac to denote the com-
plement of A. Let j ∈ Ac be a candidate variable for in-
clusion. Its quality is measured how much, acting alone,
it can help reduce the current residual. Since ‖hj‖2 = 1
we can easily see the following: argminwj≥0 ‖r− hjwj‖

2 =

argminwj≥0(wj − (rThj))
2, and hence the minimizing value

of wj is wj = max(rThj , 0). Furthermore, note that rThj =
xThj − (Hhj)

Tw = uj , where u was defined in Eqn 9.
Therefore the OMP selection criteria, quite simply, evalu-
ates to (uj − uj+)

2 for a candidate variable j, where we
use the notation uj+ = max(uj , 0). Equivalently, the re-
duction in residual norm offered is u2

j+ − 2ujuj+ which we
can maximize over. As in unconstrained OMP, we now di-
gest the chosen variable into A and then reoptimize over
it with cylic coordinate descent. Given inputs s,S, γ and
convergence parameters ε, τ , the entire algorithm, can be
organized around very simple and efficient update rules as
follows,

Initialize A = {},w = 0k,u = s, reconstruction error R = 1.

while |A| < γ

� Variable selection: j? = argmaxj∈Ac

(

u2
j+ − 2uju+j

)

� If
(

u2
j?+ − 2uj?u+j?

)

≤ ε return, else continue below.

� A = A ∪ {j?}. Refit over A by cyclic coordinate descent:

– Cycle over j ∈ A, reoptimizing wj as follows:

∗ δj = wj , wj = max(uj + wj , 0), δj = wj − δj
∗ u = u− Sjδj

– Rold = R, R = 1−
∑

j∈A wj (sj + uj)

– Converge if (R−Rold) < τRold else run another cycle
of coordinate descent over j ∈ A.

The coordinate descent procedure for refitting is guaran-
teed to converge using standard BCD convergence results [3].
Given inputs x and H, NOMP offers monotonic decrease in
the reconstruction error of x. In the dictionary learning set-
ting, however, what we cannot guarantee is global decrease
with respect to the previously found dictionary. Nonethe-
less, as we report in section 6, in hundreds of experiments
on real world data, we always saw stable descent behavior.

3.2 Non-negative Lasso (NLASSO)
We rewrite the NLASSO problem, Eqn 7 with p = 1,

equivalently as:
argmin
w∈RK

R(w) + δ(w) (10)

which is a composite objective comprising of a smooth term
R(w) and a non-smooth indicator function for the simplex
defined as δ(w) = 0 if w ≥ 0, ‖w‖1 ≤ γ and ∞ otherwise.
We use an accelerated proximal method, FISTA [2], to han-
dle such an objective function. In proximal methods, the
idea is to linearize the smooth component, R, around the
current iterate (say wt), and minimize

min
w∈RK

R(wt) +∇R(wt)(w −wt) +
L

2
‖w −wt‖22 + δ(w)



where ∇R(w) = s − Sw (recall the notation from Eqn. 8).
The third term above, called proximal term, keeps the up-
date in a neighborhood of the current iterate wt where R

is close to its linear approximation. L > 0 is a parameter,
which should essentially be an upper bound on the Lipschitz
constant of∇R and is typically set with a linesearch. We can
rewrite this problem as, w? = minw∈RK

1
2
‖w − u‖22 + δ(w)

where u = wt − 1
L
∇R(wt). The above minimization func-

tional (mapping u to w?) is also called the proximal opera-

tor. For our purposes, it reduces to the projection operator
to the convex set w ≥ 0, ‖w‖1 ≤ γ. An efficient linear time
algorithm for such a projection onto the simplex is given
in [8]. The rest of the FISTA details remain unchanged; we
point the reader to [2] for more details. It is easy to see
that we can also equivalently solve the more familiar penal-

ized form of Lasso: argmin
w

(

R(w) + γ′ ∑
j wj

)

+δ′(w) for

some one-to-one correspondence between γ′ and γ and with
δ′ simply being an indicator function for the non-negative
orthant w ≥ 0. In this case, the associated prox operator

simply returns (wt− 1
L
∇R(wt)− γ′

L
)+. Furthermore, due to

our dictionary and data normalization, Lasso screening tests
proposed very recently [19] can be immediately adapted to
the non-negative case and applied to discard elements of w
upfront that are guaranteed to be zero-valued.

4. SPARSE DICTIONARY LEARNING
We now discuss the dictionary learning phase where we

update H. Our strategy for this phase is reminiscent of
the Hierarchical Alternating Least Squares (HALS) algo-
rithm [6] which solves rank-one minimization problems to se-
quentially update both the rows of H as well as the columns
of W (while we perform parallel row updates for W by in-
voking the sparse solvers developed in Section 3).
Let us denote the data matrix as X = (x1 . . .xN )T ∈

R
N×D and let vk be the kth column of W, i.e., W =

(v1 . . .vK). Let Rk =
(

X−
∑

i:i 6=k vih
T
i

)

be the residual

matrix excluding the kth atom. We denote the constraint
set for learning dictionaries as

C = {h ∈ R
D such that h ≥ 0, ‖h‖0 ≤ ν, ‖h‖2 = 1}

The BCD subproblem of optimizing hk keeping other atoms
fixed becomes a rank-one matrix approximation problem,

hk = argmin
h∈C

1

N

∥

∥

∥
Rk − vkh

T
∥

∥

∥

2

fro
+ λ‖h− h0

k‖
2
2 (11)

where ‖A‖fro denotes the Frobenius norm of matrix A. It
is easy to see that this reduces to a projection problem,
hk = argmin

h∈C ‖h−qk‖
2
2, where the vector qk is given by,

qk =
1
N
RT

k vk + λh0

1
N
‖vk‖22 + λ

(12)

Note from the numerator that the residual term and the
prior compete for contributing to qk.

Efficient computation of Residual matrix times a
vector: Since Rk is dense, we want to avoid computing
it explicitly and instead use the following,

RT
k vk = XTvk −

∑

i 6=k

hi(v
T
i vk) (13)

The second term,
∑

i 6=k hi(v
T
i vk), can be expressed com-

pactly and efficiently as follows: Let G = WTW, which is
a small K ×K matrix, and let g = Gk, its k

th column. Set
gk = 0. Then its easy to see that HTg =

∑

i 6=k hi(v
T
i vk).

Therefore, we have,

qk =
1
N
RTvk + λh0

1
N
‖vk‖22 + λ

=
1
N

(

XTvk −HTg
)

+ λh0

1
N
Gkk + λ

(14)

Projection to the set C of Unit Norm Non-negative
Sparse Vectors: We now consider the following projection
problem: h? = argmin

h∈C ‖h − q‖22. First, let h be any ν-

sparse vector in R
D and let I(h) be its support. Let i1 . . . iD

be a permutation of the integer set 1 ≤ i ≤ D such that
qi1 , . . . qiD is in sorted order and define I? = {i1, . . . , is}
where s is the largest integer such that s ≤ ν and qi1 >

. . . > qis > 0. Now its easy to see that,

argmin
h∈C

‖h−q‖22 = argmax
h∈C

∑

i∈I(h)

hiqi ≤ argmax
h≥0,‖h‖2=1

∑

i∈I?

hiqi

Therefore, the exact solution to this problem given by,

h?
I? = argmin

h∈R|I?|,‖h‖2=1

‖h− qI?‖
2 =

qI?

‖qI?‖
, h?

I?c = 0 (15)

where I?c denotes the complement of I?. Note that if I?

turns out to be empty while running dictionary learning
phase in BCD, h?

I? is undefined, and in this case, we do
not update the previous value of that variable. However, we
never observed this to happen in practice.

Hence, all we need to solve the projection problem ex-

actly is to find upto the top-ν non-negative values of qk

and normalize them to unit norm. We also note that in the
dictionary learning phase we require the summary statis-
tics: G = WTW ∈ R

K×K and columns of the matrix
XTW ∈ R

D×K .

5. IMPLEMENTATION DETAILS
We briefly recap the developments so far and provide an

outline for this section. Our parallelization strategy hinges
on two observations: (a) the objective function is separable
in the sparse coding variables (rows of W) which therefore
can be optimized in an embarrassingly parallel fashion, and
(b) by enforcing hard sparsity on the dictionary elements,
we turn H into an object that can be manipulated very
efficiently in memory. Our implementation is carefully or-
ganized around efficient matrix computations and one-pass
aggregation of summary statistics. We begin by describing
our data structures (summarized in Table 1) and then out-
line our multicore implementation which requires that the
data matrix should fit in memory. We relax this assumption
in our cluster implementation sketched in Figure 1 which
runs each iteration of the algorithm by making a single pass
over the data (i.e., one MapReduce job). Note that our ap-
proach generalizes to other large-scale matrix factorization
problems where separability, sparsity and in-memory com-
putation can be similarly exploited.

Efficient Matrix Computations: Table 1 records various
matrices, their storage schemes, computation strategy and
whether they are materialized in memory in our single-node
multicore and Hadoop-based cluster implementation. We
use compressed row storage for holding the read-only static



sparse matrix X. For H, and W if it is materialized, we use
a dynamic sparse matrix data structure which essentially
is an array of pointers to the non-zero indices and values
for each row, allowing sparsity structure of rows to change
across the iterations. Note that sparsity “compresses” the
bigger dimension (D) for H as opposed to the smaller di-
mension (K) for W, making it reasonable to manipulate H
in-memory. Also note that the maximum memory require-
ment for W can be bounded by O(Nγ) for NOMP, while
NLASSO does not offer similar predictability beforehand.

Table 1: Matrices: Storage and Materialization

Matrix Dims #Bytes Storage Multi- Cluster
Core

X N × D 16nX CRS Y N
W N × K 16Nγ Dyn. Sparse Y/N N
H K × D 16Kν Dyn. Sparse Y Y

W
T
W K × K 4K(K + 1) Dense Symm. Y Y

HH
T K × K 4K(K + 1) Dense Symm. Y Y

X
T
W D × K 8DK Dense N/Y N

HX
T K × N 8NK Dense N N

Recall that in the parallel sparse coding phase, for NOMP
and NLASSO, we can carry out computations using s =
Hx and S = HHT (see Eqn. 8). The matrix HXT need
not be materialized as its columns – which are the s vec-
tors – can be computed on the fly, used, and then imme-
diately discarded. The matrix S is a dense symmetric ma-
trix whose lower half is stored in the standard lower-packed
storage format, and computed by K sparse matrix-vector
products: Hh1 . . .HhK . Alternatively, matrix-vector prod-
ucts against S may be computed in time O(Kν) implicitly
as Sv = H(HTv). Likewise, note that dictionary learning
phase requires G = WTW and XTW. It is profitable to
express these matrices as the aggregation of rank-one ma-
trices: WTW =

∑N

i=1 wiw
T
i and XTW =

∑N

i=1 xiw
T
i .

These matrices are the summary statistics we need for dic-
tionary learning. Hence, a single pass over the data during
the parallel sparse coding phase enables us to perform these
aggregations, and prepare these matrices for the dictionary
learning phase. Furthermore, in the aggregation above, we
exploit the sparsity of xi and wi by updating only the non-
zero cells. Finally, in the projection step of the dictionary
learning phase, Eqn 15, we use priority queues for finding
top ν non-negative elements in time O(D log(ν)).

Single-Node In-memory Multicore Implementation:
We implemented parallel sparse coding using multithread-
ing to utilize parallelism on a single multicore machine. The
data matrix X is held in memory in its entirety. It is di-
vided into as many blocks as the number of threads, and for
each block, a single thread runs NOMP or NLASSO sequen-
tially on the datapoints in that block. Also held in mem-
ory are the K × K dense symmetric matrices, S = HHT

and G = WTW which we assume are small. Assuming
ν = O(K), H also similarly requires O(K2) storage and
is held in memory. To maximize the data sizes that our
implementation can accommodate, we considered two dif-
ferent execution plans: (a) Plan 1: The first plan does
not materialize the matrix W, but explicitly maintains the
dense D×K matrix XTW. As each invocation of NOMP or
NLASSO completes, the associated sparse coding vector wi

is used to update the summary statistics matrices, WTW

and XTW, and then discarded, since everything needed for
dictionary learning is contained in these summary statistics.
When DK � Nγ, this leaves more room to accommodate
larger datasizes in memory. However, not materializing W
means that NLASSO cannot exploit warm-starts from the
sparse coding solutions found with respect to the previous
dictionary. (b) Plan 2: In an alternate plan, we materialize
W instead which consumes lesser memory if Nγ � DK.
We then serve the columns of XTW, i.e., the vectors XTvk

in Eqn 14, by performing a sparse matrix-vector product on
the fly. However, this requires extracting a column from W
which is stored in a row-major dynamic sparse format. To
make column extraction efficient, we utilize the fact that the
indices of non-zero entries for each row are held in sorted or-
der, and the associated value arrays conform to this order.
Hence, we can keep a record of where the ith column was
found for each row, and simply advance this pointer when
the (i + 1)th column is required. Thus, all columns can be
served efficiently with one pass over W. Two benefits of
this plan are: (i) the matrix-vector product of XT against
the columns of W can be parallelized and (ii) NLASSO
can use warm-starts. Thus, in this plan, both sparse cod-
ing and dictionary learning phases benefit from parallelism.
To concretize the preceding discussion with some numbers:
on a multicore machine with 16-GB RAM, accounting for
the matrix storage given in Table 1, both plans can han-
dle around 10 million documents assuming sparsity of 100
words, γ = 5, ν = 1000, and 1000 topics need to be learnt.
If 15000 topics need to learnt, the first plan can only han-
dle about 2 million documents while the second plan can
still manage 9 million by not materializing the dense D×K

matrix XTW.
Together, these considerations outlined above, lead to a

highly efficient single-node implementation that forms the
basis for the cluster version described next.

Cluster Implementation: Unlike the multi-core setting,
our cluster implementation does not make the assumption
that the data matrix X fits in main memory. Rather, X
is stored in a distributed file system and our implementa-
tion makes one or more passes over it in parallel. Likewise,
only small blocks of the large dense matrix XTW are ever
materialized at a time and written to disk in parallel in ev-
ery iteration. We continue making the assumption that the
small matrices WTW, HHT and the highly sparse matrix
H, can be held in-memory on both the control and worker
nodes. While there are many choices for the framework one
could use to parallelize algorithms, we work with the Map-
Reduce paradigm, which fits well with the embarrassingly
parallel nature of the sparse coding phase.

The Map-Reduce (MR) programming model was designed
to simplify the processing of large files on a parallel sys-
tem through user-defined Map and Reduce primitives. A
MR job consists of two phases: a Map phase and a Reduce

phase. During the Map phase, the user-defined Map prim-
itive transforms the input data into (key, value) pairs in
parallel. These pairs are stored and then sorted by the sys-
tem so as to accumulate all values for each key. During the
Reduce phase, the user-defined Reduce primitive is invoked
on each unique key with a list of all the values for that key;
usually, this phase is used to perform aggregations. Finally,
the results are output in the form of (key, value) pairs. Each
key can be processed in parallel during the Reduce phase.
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Figure 1: MapReduce implementation

Hadoop (http://hadoop.apache.org/), an open-source im-
plementation of the MR programming model, has emerged
as a vastly popular platform for parallelization in industry
and academia. A user can perform parallel computations
by submitting one or more MR jobs to Hadoop. One of the
key advantages of Hadoop is that it is capable of running on
large commodity clusters and recovering from both data as
well as compute node failures.
Hadoop’s implementation of the MR programming model

targets executions where the input, intermediate (shuffle),
and output datasets do not fit in aggregate main mem-
ory. Each MR job has to scan the input and intermediate
datasets, which is time consuming. Furthermore, each job
adds significantly to execution time in the form of startup
costs. For these reasons, implementations that require the
fewest number of MR jobs are ideal. Our cluster implemen-
tation below is driven by this goal.
Figure 1 presents the overall flow for the MR implemen-

tation of our algorithms. The execution proceeds in two
phases, the preprocessing phase and the learning phase. The
preprocessing phase is a one-time step whose objective is to
re-organize the data for better parallel execution of the BCD
algorithm. The learning phase is iterative and is coordinated
by a control node that first spawns NOMP or NLASSO MR
jobs on the worker nodes, then runs sequential dictionary
learning and finally monitors the global mean reconstruc-
tion error to decide on convergence.
The preprocessing step consists of randomization and block-

ing. The goal of this step is to transform the data set into
a set of “blocks” such that each block is a row-wise parti-
tion of the input matrix and all the blocks are roughly of
the same size and sparsity, implying roughly equal units of
work. We block the data set for the following reasons. First,
during the learning phase, if one were to provide the input
matrix to the Mappers one row at a time, majority of the
time spent would go into performing I/O and not actual
computation. To amortize the cost of performing I/O, we
want to process a block of rows at a time. Second, ensur-
ing these blocks are roughly of the same size and sparsity
allows for a load balanced execution. Finally, blocking the
input matrix amortizes the cost of writing out blocks of the
XTW matrix during the learning phase by allowing one to
partially aggregate this matrix for each input block, directly
in memory. During the pre-processing step, the Mapper as-
signs each row to a random block and emits the block id as a
key and row as a value. The Reducer then assimilates each
block and writes it out to the file system. At the end of the
pre-processing phase, we expect to have row-wise blocks of
the input matrix that are roughly of same size and sparsity.
The subsequent learning phase proceeds iteratively with

each iteration consisting of a parallel sparse coding phase
and a sequential dictionary learning phase. The parallel

sparse coding phase is implemented using a single Map-

Reduce job. To explain its steps, we need the following nota-
tion: letXr denote the rth block of theX and R be the num-
ber of rows that were assigned to a block by the preprocess-
ing phase. We refer to R as the row blocking parameter. A
Mapper for the parallel sparse coding phase accepts Xr and
runs NOMP/NLASSO to obtain the associated sparse cod-
ing matrix Wr which can be materialized in memory since
the blocks are small. We use the notation Wr,i to denote
its ith column. For large D,K, the local summary statistics
matrix XrTWr cannot be materialized and written out in
one go. Rather, the Mapper computes a set of D×C matri-

ces, where C ≤ K: Qr,j = XT
r

(

Wr,(j−1)∗C+1, . . .Wr,j∗C
)

matrix for j = 1 . . . dK
C
e. C is the column blocking parame-

ter of our implementation. The Mapper emits the block id j

as a key and column block Qr,j as value. The Reducer then
sums up these blocks over the row-blocks: Qj =

∑

r Q
r,j

which gives the jth block of C columns of the global sum-
mary statistics matrix XTW. This mechanism to write out
column blocks of the local summary statistics matrices (and
not all columns) has the following benefits: First, we can
constrain the size of the aggregations that need to take place
on the Reducers. Second, we get parallelism by having each
Reducer perform a complete aggregation for a portion of the
columns. In addition to producing the summary statistics
matrix, the MR job also writes out the aggregated recon-
struction error and WTW matrix. The output of the MR
job is delivered to the sequential dictionary learning phase,
at the end of which we check for convergence and proceed
to the next iteration if necessary. Note that each mapper
can writeout its associated Wr as well to help jumpstart
NLASSO in the next iteration.

6. EMPIRICAL STUDIES
We begin with small scale experiments on two classic doc-

ument collections, the 20 newsgroups collection (N = 19228,
D = 18607 and K = 20) and TDT news corpus (N = 9394,
D = 19528 and K = 30), that come with manually gen-
erated labels with respect to which quality measurements
may be made. We then report scalability experiments for
our multicore and Hadoop implementations on much larger
datasets (New York times and an extended Pubmed Cor-
pora) where extrinsic evaluation cannot be done due to the
high cost of labeling.

Statistical Performance on Small Datasets:We explore
the effect of double sparsity on the statistical performance of
the non-negative sparse coding. We varied dictionary spar-
sity, covering 5% to 100% of the full data dimensionality.
The coding sparsity was varied from 0.05 to 1.0 interpreted



as the fraction of the full dictionary size K that NOMP is
allowed to use for coding. For NLASSO, the same fractions
were used literally as the γ values. Empirically, in this range,
NLASSO gave similar degrees of sparsity as NOMP. For each
choice of γ, ν, we ran the learning algorithms 10 times with
different initialization and averaged the following: (a) the
clustering quality in terms of normalized mutual informa-
tion (NMI) obtained by assigning cluster argmaxj wij to
document i, (b) the classification accuracy returned by run-
ning linear logistic regression on 5% labeled samples after
unsupervised sparse coding, to emulate a semi-supervised
learning scenario, and (c) the final objective values attained
at convergence. Each choice of γ was associated with the
mean sparsity of the final W across different random ini-
tializations.

Figure 2: Results on 20NG (top), TDT2 (bottom)
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 ν = 5% (nomp)

ν = 10% (nomp)

ν = 25% (nomp)

ν = 100% (nomp)

ν = 5%(nlasso)

ν = 10%(nlasso)

ν = 25%(nlasso)

ν = 100%(nlasso)

In Figure 2, we plot NMI, Classification accuracy of Logis-
tic Regression and Objective values as a function of percent-
age of non-zeros in W for different degrees of percentage of
non-zeros in H, for both NOMP and NLASSO. We make the
following observations: (1) Our Sparse NMF (both NOMP
and NLASSO) demonstrates substantially better clustering
and classification performance than NMF which corresponds
to the rightmost point on the curves for ν = 100%. Further-
more, we never observed an increase in objective function
with NOMP in these experiments; all runs smoothly con-
verged. (2) Interestingly, we find that on both datasets,
NOMP gives substantially better reconstruction error at sim-
ilar sparsity levels than NLASSO. However, the induced
sparse representation does not translate into better clus-
tering performance or classification accuracy. This might
seem counter-intuitive at first, but can be reasoned as fol-
lows. The NOMP hypothesis space is larger since it does
not restrict the magnitude of the weights as NLASSO does.
This leads to better mean reconstruction error rates at sim-
ilar sparsity levels. Indeed, reconstruction error alone does
not reflect model utility for these tasks since we know that
SVD can do even better without non-negativity and spar-
sity constraints. The presence of additional weight shrink-
age in NLASSO appears to act as an effective regularizer
that leads to better statistical performance. (3) We see
that the ν = 10% curve performs as well or better than
the ν = 100% curve. This implies a 10-fold storage reduc-
tion for H strongly supporting our choice to maintain it in
memory as a light-weight sparse matrix. (4) In Table 2, as
a sanity check, we compare clustering performance against
popular alternatives. The parameters are γ = 0.05 (to be
interpreted as fraction of K for NOMP) and ν = 0.1D. We

Figure 3: Multicore Performance: NYTimes data
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see that Sparse NMF with NLASSO performs quite compet-
itively.

Table 2: Clustering Quality
Algorithm 20NG TDT2
pLSA 51.5 (2.8) 60.3 (1.6)
LDA 49.4 (1.3) 66.7 (1.5)
K-means 41.4 (14.4) 70.6 (2.3)
NMF 51.0 (1.1) 68.1 (2.1)
SparseNMF (NLASSO) 55.4 (2.4) 72.2(2.5)
SparseNMF (NOMP) 51.3 (2.0) 70.9 (2.2)

Multicore Performance:We next consider computational
performance on a commodity hexacore machine with 4GB
RAM. For these experiments, we work with the popular NY
times corpus (available from UCI Machine Learning Repos-
itory) comprising of N = 299752 documents indexed over a
vocabulary ofD = 102660 words, with about 70-million non-
zero entries in the document-term matrix. We set ν = 1000,
γ = 5 for NOMP and 5 for NLASSO and ran our algo-
rithms for K = 100 while increasing the number of cores
from 1 to 6. The total time to convergence for both the
execution plans is shown in Figure 3 (left). We make the
following observations. The use of 6-cores offers the follow-
ing speedups over a single core: 5.2x for NOMP (plan 1),
4.3x for NOMP (plan 2), 4.7x for both NLASSO (plan 1) and
NLASSO (plan 2). Thus, we see near-linear speedups with
increasing number of cores. NOMP prefers plan 1 because it
cannot utilize warm starts and because dictionary learning
is extremely fast (about 0.5 seconds for updating 100 topics
per iteration) since it only needs to perform a top-ν oper-
ation followed by simple normalization step. NLASSO, on
the other hand, prefers plan 2 since warm starts allow it to
converge faster. As shown in Figure 3 (right), its iterations
start to take lesser and lesser time. The dictionary learning
phase for plan 2 takes about 35 seconds in each iteration for
1 core, which reduces to about 13 seconds with 6 cores, due
to parallel matrix-vector products as described in section 5.

Hadoop Scaleout: These experiments were performed on
IBM’s Nadal cluster, which has 48 cores distributed across
12 nodes with 4 GB of RAM per core. All the nodes were
running RHEL 5 (kernel 2.6.18-164.el5) with IBM Java v1.6.0
and Hadoop 0.20.2. We measured execution time of the
Hadoop implementation on an extended PubMed dataset
(also available at UCI repository) containing 106 million
documents, 141K words, with more than 6 Billion non-zeros
in the document term matrix, as we varied various algorithm
and hardware parameters. For these experiments, the row
blocking parameter R = 100K rows, the column blocking
parameter C = 10 columns, γ = 5 and ν = 1000, unless
otherwise noted.
(a) Varying number of cores: Figures 4 and 5 present
execution time for an iteration of NOMP, an iteration of
NLASSO, and the blocking phase that is common to both
algorithms, for different dataset sizes, as we vary the number
of cores from 16 to 48. Speedup for the blocking phase (that



is common to both algorithms) varies from 1.53x for 8.2M
rows to 2.81x for 106M rows, the maximum possible speedup
here being 3x (as we only vary the number of cores from 16 to
48). For 8.2M rows, the speedup is roughly half that of the
maximum possible speedup as the data set is small and the
system is under utilized. For 106M rows, all cores take part
in I/O and the blocking procedure, improving scalability.
The blocking phase is thus very efficient and is expected to
continue to scale well to larger datasets.
As for the performance of an iteration of NOMP, the

speedup is roughly 1.85x for 8.2M rows and 2.7x for 106M
rows when K = 100 and 2.1x for 8.2M rows and 3.54x for
106M rows when K = 200. As for the performance of an
iteration of NLASSO, the speedup is roughly 1.81x for 8.2M
rows and 2.75x for 106M rows when K = 100 and 1.86x for
8.2M rows and 3.02x for 106M rows when K = 200. Keeping
K fixed, speedup improves with increasing number of rows
as the execution changes from being I/O bound and under
utilizing the system to being compute bound. Furthermore,
keeping the number of rows fixed, speedup improves as we
increase K as there is more computation on offer to bet-
ter utilize the available parallelism. We observe super linear
speedup in some cases likely due to improvements in caching
behavior as we increase the number of cores. Given that the
execution is compute-bound on large datasets, we expect
the implementation to continue to scale on larger number of
cores provided the dataset is sufficiently large to make the
execution compute-bound.

Figure 4: Varying Number of Cores - 100 Topics
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Figure 5: Varying Number of Cores - 200 Topics
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(b) Varying row block size: Figure 6 presents execution
times for an iteration of NOMP, an iteration of NLASSO,
and the blocking phase that is common to both algorithms,
for different values of the row blocking parameter R, as we
vary the number of rows in the dataset, keeping number of
cores fixed at 48. The performance of the blocking phase im-
proves marginally (from 496 to 373 for 8.2M rows and from
3392 to 3382 for 106M rows) as we increase the size of each
block due to the fact that the system needs to sort a fewer
keys with fewer blocks. As the performance of the blocking
phase is not adversely affected by increasing data sizes, we
expect the blocking phase to scale well to larger datasets.
However, the performance of an iteration of NOMP and
NLASSO varies significantly with varying R. For NOMP,
seconds per iteration varies from 200 to 122 for 8.2M rows
and from 2099 to 1032 for 106M rows. For NLASSO, seconds
per iterations varies from 266 to 180 for 8.2M rows and from

2650 to 1624 for 106M rows. R = 200K can improve perfor-
mance by nearly 2x when compared to R = 50K. Given that
performance of the blocking phase is relatively unaffected by
the parameter R, and that the performance of the learning
phase is heavily dependent on the value of R, picking the
largest possible value for R that allows for an in-memory
execution will likely provide the best performance.

Figure 6: Varying Row Block Size
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(c) Varying number of topics: Figure 7 presents ex-
ecution times for an iteration of NOMP, an iteration of
NLASSO, for different number of topics K, as we vary the
data size, keeping number of cores fixed at 48. For NOMP,
at 8.2M rows, execution time increases by 2.76x, and at
106M rows, execution time increases by 4.69x, when go-
ing from K = 100 to 400. The execution under utilizes
the system at 8.2M rows and hence execution time grows
sub-linearly with K. However, at 106M rows, execution
time grows near-linearly as the execution is compute bound.
Overall, execution time for NOMP grows near-linearly with
K. For NLASSO, at 8.2M rows, execution time increases by
5.81x, and at 106M rows, execution time increases by 6.22x,
when going from K = 100 to 400. Thus, execution time for
NLASSO grows super-linearly withK. We can explain these
observations as follows. The per iteration cost of NOMP is
linear in K, involving search over K atoms, and the total
number of iterations is atmost γ. For NLASSO, the gradi-
ent computation involves the dense matrix-vector product
Sw whose complexity depends on the sparsity of w, but for
dense iterates is O(K2). For large K, linear scaling behavior
can be recovered for NLASSO by not materializing S, but
rather computing Sw using two sparse matrix-vector prod-
ucts H(HTw) which has O(Kν) cost. Convergence results
from [2] show that NLASSO, implemented using FISTA, will

take about O(
√

1
ε
) iterations to return an ε optimal solution,

independent of K.

Figure 7: Varying Number of Topics
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(d) Varying column block size: Figure 8 presents ex-
ecution times for an iteration of NOMP, an iteration of
NLASSO, for different number of topics K (100,400) and
column blocking parameter C (5,10,20), as we vary the data
size, keeping number of cores fixed at 48. For both NOMP
and NLASSO, we observe an interesting trend. When K =
100, C = 5 results in the least execution time as it allows one
to leverage a larger number of cores in the Reduce phase of
the MR job. However, K = 400, C = 5 results in the largest
execution time as it results in an excessively larger number
of Reduce tasks, while C = 20 results in the least execu-



tion time. These indicate that one must carefully select the
parameter C based on the cluster configuration and desired
number of topics.

Figure 8: Column Block Size and Topics
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(e) Varying coding sparsity: Figure 9 presents execution
times for an iteration of NOMP, an iteration of NLASSO,
for K = 400, as we vary the data size, keeping number of
cores fixed at 48. For NOMP, varying γ from 5 to 20 in-
creases execution time by roughly 1.82x for 106M rows. For
NLASSO, varying γ from 0.1 to 1 increases execution time
by roughly 1.67x for 106M rows. Thus, for both algorithms,
execution time grows sub-linearly with coding sparsity. The
per iteration cost of NLASSO is independent of γ and as
outlined in (c), it has linear dependence on γ. While the re-
fitting step of NOMP has superlinear dependence on γ, its
values are such a small fraction of K that this dependence
is “washed out”.

Figure 9: Varying Coding Sparsity
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Comparison to related work: On the extended Pubmed
corpus with over 106-million rows and more than 6 bil-
lion non-zero entries, with K = 100 and parameters re-
ported in this section, our fastest algorithms running on 12
nodes (with 48 cores) are expected to converge and com-
plete execution in less than 10 hours. To the best of our
knowledge, this is the largest demonstration of sparse cod-
ing/dictionary learning algorithms reported to date. Com-
paring this performance with other related published work
has several caveats due to major differences in convergence
properties of algorithms benchmarked, actual cluster config-
uration, characteristics of datasets used, as well as innumer-
able other lower-level implementation details. In particular,
we are not aware of any publically available Hadoop imple-
mentation of Sparse NMF and related dictionary learning
algorithms to compare against. Nonetheless, to put our per-
formance into perspective, we collect some published results
in this section. [15] report running the standard NMF [14]
algorithms on a proprietary dataset with around 4.38-billion
non-zeros with K = 10, on a Hadoop cluster with unspeci-
fied configuration. They report 7-hours per iteration each re-
quiring multiple Map-Reduce jobs, which appears to be sig-
nificantly less efficient than our implementation. [18] paral-
lelize LDA and report about 4.1 hours on 8.2 million Pubmed
documents, with K = 2000, on a non-dedicated Hadoop
cluster with 50 nodes. [17] provide a different MPI-based
parallel LDA implementation and report 10-hours for the
same dataset on 1024 processors.
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