11 The Geometric Basis of Semi-supervised
Learning

Vikas Sindhwani
Misha Belkin
Partha Niyogi

In this chapter, we present an algorithmic framework for semi-supervised inference
based on geometric properties of probability distributions. Our approach brings
together Laplacian-based spectral techniques, regularization with kernel methods,
and algorithms for manifold learning. This framework provides a natural semi-
supervised extension for kernel methods and resolves the problem of out-of-sample
inference in graph-based transduction. We discuss an interpretation in terms of a
family of globally defined data-dependent kernels and also address unsupervised
learning (clustering and data representation) within the same framework. Our al-
gorithms effectively exploit both manifold and cluster assumptions to demonstrate
state-of-the-art performance on various classification tasks. This chapter also re-
views other recent work on out-of-sample extension for transductive graph-based
methods.

11.1 Introduction

We start by providing some intuitions for the geometric basis of semi-supervised
learning. These intuitions are demonstrated in pictures (Figures 1,2 and 3).

Consider first the two labeled points (marked “+” and “-”) in the left panel of
Figure 1. Our intuition may suggest that a simple linear separator such as the one
shown in Figure 1, is an optimal choice for a classifier. Indeed, considerable effort
in learning theory has been invested into deriving optimality properties for such a
classification boundary.

The right panel however shows that the two labeled points are in fact located
on two concentric circles of unlabeled data. Looking at the right panel, it becomes
clear that the circular boundary is more natural given unlabeled data.
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Figure 11.1 Circle
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Figure 11.2 Curve

Consider now the left panel in Figure 2. In the absence of unlabeled data the black
dot (marked “?”) is likely to be classified as blue (marked “-”). The unlabeled data,
however, makes classifying it as red (marked “+”) seem much more reasonable.

A third example is shown in Figure 3. In the left panel, the unlabeled point may
be classified as blue (-) to agree with its nearest neighbor. However, unlabeled data
shown as grey clusters in the right panel changes our belief.

These examples show how the geometry of unlabeled data may radically change
our intuition about classifier boundaries. We seek to translate these intuitions into
a framework for learning from labeled and unlabeled examples.

Recall now the standard setting of learning from examples. Given a pattern space
X, there is a probability distribution P on X x R according to which examples are
generated for function learning. Labeled examples are (z,y) pairs drawn according
to P. Unlabeled examples are simply z € X sampled according to the marginal
distribution P+ of P.

As we have seen, the knowledge of the marginal Px can be exploited for better
function learning (e.g., in classification or regression tasks). On the other hand,
if there is no identifiable relation between Px and the conditional P(y|z), the
knowledge of Px is unlikely to be of use.

Two possible connections between Px and P(y|z) can be stated as the following
important assumptions (also see the tutorial introduction in Chapter 1 for related
discussion):
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Figure 11.3 Blobs

1. Manifold Assumption: Suppose that the marginal probability distribution
underlying the data is supported on a low-dimensional manifold. Then the family
of conditional distributions P(y|z) is smooth, as a function of z, with respect to
the underlying structure of the manifold.

2. Cluster assumption: The probability distribution P is such that points in the
same “cluster” are likely to have the same label.

We see that the data shown in Figures 1 and 2 satisfy the manifold assumption.

The picture in Figure 3 is meant to show Gaussian clusters. The concentric circles
in Figure 1 can also be thought as “clusters”, although such clusters are highly
non-Gaussian and have an interesting geometric structure. One may conjecture
that many clusters in real-world datasets have such non-Gaussian structures. This
is evidenced, for example, by frequent superiority of spectral clustering over more
traditional methods such as k-means.

In many natural situations, it is clear that the data is supported on a low-
dimensional manifold. This is often the case when points are generated by some
physical process. For example, in speech production the articulatory organs can
be modeled as a collection of tubes. The space of speech sounds is therefore
a low-dimensional manifold parameterized by lengths and widths of the tubes.
Photographs of an object from various angles form a 3-dimensional submanifold
of the image space. In other cases, such as in text retrieval tasks, it may be less
clear whether a low-dimensional manifold is present. However, even then, and also
for almost any imaginable source of meaningful high-dimensional data, the space of
possible configurations occupies only a tiny portion of the total volume available.
One therefore suspects that a nonlinear low-dimensional manifold may yield a useful
approximation to this structure.

To proceed with our discussion, we will make a specific assumption about the
connection between the marginal and the conditional distributions. We will assume
that if two points z1,2z2 € X are close in the intrinsic geometry of Py, then
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the conditional distributions P(y|z1) and P(y|z2) are similar. In other words, the
conditional probability distribution P(y|z) varies smoothly along the geodesics in
the intrinsic geometry of Px. A more formal statement for this smoothness property
is that [ ||VP(y|z)||*dpx is small, where y is the probability distribution over the
manifold. That last quantity can be rewritten as (LP(y|z), P(y|z)), where L is the
weighted Laplacian associated to probability measure p. We will elaborate on these
objects later in the chapter.

We will introduce a new framework for data-dependent regularization that ex-
ploits the geometry of the probability distribution. It is important to note that the
resulting algorithms will take into account both manifold and cluster assumption.
While this framework allows us to approach the full range of learning problems from
unsupervised to supervised, we focus on the problem of semi-supervised learning.
This chapter gathers material from [3, 5, 19, 20].

11.2 Incorporating Geometry in Regularization

Laplace-Beltrami
operator

Learning in
RKHS

We will now assume that the marginal distribution Py is supported on a low-
dimensional manifold M embedded in RY. We will be interested in constructing
spaces of functions which are attuned to the geometric structure of Px. More
specifically we will want to control the gradient of the functions of interest with
respect to the measure Px: [, [|Vacf||?dPx. Here the gradient is taken with respect
to the underlying Riemannian manifold M and the integral is weighted by the
measure on that manifold.

If the manifold M has no boundary or if the probability distribution P+ vanishes
at the boundary, it can be shown that

/ IV fl?dPx =/ fLopy (F)dPx = (f, Loy (F)) 2(p )
M M

where V¢ is the gradient on M and L, is the weighted Laplace-Beltrami operator
associated to measure Py. This operator is key in penalizing functions according
to the intrinsic geometry of the probability distribution Px.

We utilize these geometric intuitions to extend an established framework for
function learning. A number of popular algorithms such as SVM, ridge regres-
sion, splines, radial basis functions may be broadly interpreted as regularization
algorithms with different empirical cost functions and complexity measures in an
appropriately chosen Reproducing Kernel Hilbert Space (RKHS) [17, 22, 18].

Recall that for a Mercer kernel K : XxX — R, there is an associated RKHS H g of
functions X — R with the corresponding norm || || k. Given a set of labeled examples

(zi,yi), © = 1,...,1 the standard framework estimates an unknown function by
minimizing
1<
fr= argminsz(wi,yi,f) +flI% (1L.1)

fEHK i—1
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where V is some loss function, such as squared loss (y; — f(=;))? for RLS or the
soft margin loss function max[0,1 — y; f(z;)] for SVM. Penalizing the RKHS norm
imposes smoothness conditions on possible solutions. The classical Representer
Theorem states that the solution to this minimization problem exists in Hx and
can be written as

l
f*(@) = 3 ik (@i, ) (11.2)

Therefore, the problem is reduced to optimizing over the finite dimensional space of
coefficients «a;, which is the algorithmic basis for SVM, Regularized Least Squares
and other regression and classification schemes.

We first consider the case when the marginal distribution is already known.

11.2.1 Marginal Distribution Py is known

Our goal is to extend the kernel framework by incorporating additional information
about the geometric structure of the marginal Py. We would like to ensure that
the solution is smooth with respect to both the ambient space and the marginal
distribution P. To achieve that, we introduce an additional regularizer :

l
= argmin 2 >V (@i, i, f) +vall flli +wll£17 (11.3)
ferx b4

where || f||% is an appropriate penalty term that should reflect the intrinsic structure

of fPf)Ca €.g., (f: LTQC (f))L2(fo)
Here v4 controls the complexity of the function in the ambient space while v;

controls the complexity of the function in the intrinsic geometry of Px. One can
derive an explicit functional form for the solution f* as shown in the following
theorem under some fairly general conditions [3]:

Theorem 11.1 Assume that the intrinsic regularization term is given by
171 = [ sDsdrs
X

where D is a bounded operator from the RKHS associated to K to L?>(Px). Then
the solution f* to the optimization problem in Eqn. 11.3 above exists and admits
the following representation

1
£(@) = Y aik i) + [ a)K (o) dPx(w) (11.4)
i=1 x

We note that the Laplace operator as well as any differentiable operator will
satisfy the boundedness condition, assuming that the kernel is sufficiently differen-
tiable.

The Representer Theorem above allows us to express the solution f* directly in
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terms of the labeled data, the (ambient) kernel K, and the marginal Px. If Py
is unknown, we see that the solution may be expressed in terms of an empirical
estimate of Px. Depending on the nature of this estimate, different approximations
to the solution may be developed. In the next section, we consider a particular
approximation scheme that leads to a simple algorithmic framework for learning
from labeled and unlabeled data.

11.2.2 Marginal Distribution Py Unknown

In most applications of interest in machine learning the marginal Py is not known.
Therefore we must attempt to get empirical estimates of Px and || ||;. Note that
in order to get such empirical estimates it is sufficient to have unlabeled examples.

As discussed before the natural penalty on a Riemannian manifold is the Laplace
operator. The optimization problem then becomes

l
f* = argmin 3 > V(i i, ) + vallfllic + 71 / (Vack, Ve f)
FeEHK i—1 M

It can be shown that the Laplace-Beltrami operator on a manifold can be
approximated by graph Laplacian using the appropriate adjacency matrix (see
[2, 16] for more details).

Thus, given a set of | labeled examples {(z;,y;)}!_; and a set of u unlabeled

examples {z; };jfl‘, we consider the following optimization problem :

l I+u
1 VI 2
*=argmin - Y V(i yi, f) + %+ x;) — f(x;))" Wi
f* = argmi lg (@i, 3> £) +vall fll% (uH)sz:l(f() f(@5))
1 ¢ v
= in- S V(zi,vi, 2 L_fTLf 11.5
a}{egjr?;nl; (wiryi D)+ 1allllic + e (11.5)

where W;; are edge weights in the data adjacency graph, f = [f(z1),..., f(@i+4)]%,
and L is the graph Laplacian given by L = D — W. Here, the diagonal matrix D
is given by D;; = Eé‘:{ W;;. The normalizing coefficient W is the natural scale
factor for the empirical estimate of the Laplace operator (on a sparse adjacency
graph, one may normalize by EZSL W;; instead). The following version of the
Representer Theorem shows that the minimizer has an expansion in terms of both
labeled and unlabeled examples and is a key to our algorithms.

Theorem 11.2 The minimizer of optimization problem 11.5 admits an expansion

I4+u

[ (@) =3 ik (@i, ) (11.6)

in terms of the labeled and unlabeled examples.
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The proof is a variation of a standard orthogonality argument [18].

Remark 1: Several natural choices of || || exist. Some examples are:

1. Iterated Laplacians L*. Differential operators L* and their linear combinations
provide a natural family of smoothness penalties.

2. Heat semigroup e~ %! is a family of smoothing operators corresponding to

the process of diffusion (Brownian motion) on the manifold. For corresponding
operators on graphs, see [14]. One can take ||f[|7 = [, fe~(f). We note that for
small values of ¢ the corresponding Green’s function (the heat kernel of M) can be
approximated by a sharp Gaussian in the ambient space.

3. Squared norm of the Hessian (cf. [11]). While the Hessian H(f) (the matrix
of second derivatives of f) generally depends on the coordinate system, it can be
shown that the Frobenius norm (the sum of squared eigenvalues) of H is the same in
any geodesic coordinate system and hence is invariantly defined for a Riemannian
manifold M. Using the Frobenius norm of H as a regularizer presents an intriguing
generalization of thin-plate splines. We also note that L(f) = tr(H(f)).

Remark 2: Note that K restricted to M (denoted by Ky¢) is also a kernel defined
on M with an associated RKHS Hy¢ of functions M — R. While this might suggest

1fllr = Ifwmllgy (fw is f restricted to M) as a reasonable choice for ||f]|r, it
turns out, that for the minimizer f* of the corresponding optimization problem
we get ||f*lr = ||f*l|lx, yielding the same solution as standard regularization,

although with a different . This observation follows from the restriction properties
of RKHS [3]. Therefore it is impossible to have an out-of-sample extension without
two different measures of smoothness. On the other hand, a different ambient
kernel restricted to M can potentially serve as the intrinsic regularization term.
For example, a sharp Gaussian kernel can be used as an approximation to the heat
kernel on M.

The representer theorem allows us to convert the optimization problem in
Eqgn 11.5 into a finite dimensional problem of estimating the (I + u) coefficients
a* for the expansion above. A family of algorithms can now be developed with dif-
ferent choices of loss functions, ambient kernels, graph regularizers and optimization
strategies.

11.3 Algorithms

11.3.1 Semi-supervised Classification

We now present solutions to the optimization problem posed in Eqn (11.5). To
fix notation, we assume we have I labeled examples {(zi,y:)}i—; and u unlabeled
examples {z; };ji’l‘ We use K interchangeably to denote the kernel function or

the Gram matrix.
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Laplacian Regularized Least Squares (LapRLS)

The Laplacian Regularized Least Squares algorithm solves Eqn (11.5) with the
squared loss function: V(zi, v, f) = [yi — f (a:,-)]2. Since the solution is of the form
given by (11.6), the objective function can be reduced to a convex differentiable
function of the (I + u)-dimensional expansion coefficient vector a = [a1, .. ., Qtu]?
whose minimizer is given by :

o = (JK +yall + (uzilly LE)™'Y (11.7)
Here, K is the (I + u) x (I + v) Gram matrix over labeled and unlabeled points;
Y is an (I + u) dimensional label vector given by: ¥ = [y1,...,%,0,...,0] and J is
an (I +u) x (I + u) diagonal matrix given by: J = diag(1,...,1,0,...,0) with the
first [ diagonal entries as 1 and the rest 0.
Note that when y; = 0, Eqn (11.7) gives zero coefficients over unlabeled data.
The coefficients over labeled data are exactly those for standard RLS.

Laplacian Support Vector Machines (LapSVM)

Laplacian SVMs solve the optimization problem in Eqn. 11.5 with the soft margin
loss function defined as V(z;,y;, f) = max[0,1 —y;f(2;)],y: € {—1,+1}. Intro-
ducing slack variables and using standard Lagrange Multiplier techniques used for
deriving SVMs [22], we first arrive at the following quadratic program in ! dual
variables (3 :

l
1
B =max3 i - 5878 (11.8)
=1
subject to the contraints :Zézl yiBi =0, 0<6; < % ,i=1,...1 , where
Q= YIK (@l +2, fl)z LK)\ JTY (11.9)

Here, Y is the diagonal matrix Y;; = y;, K is the Gram matrix over both the labeled
and the unlabeled data; L is the data adjacency graph Laplacian; J is an [ x (I +u)
matrix given by: J;; = 1if i = j, =z; is a labeled example and J;; = 0 otherwise. To
obtain the optimal expansion coefficient vector a* € R+ one has to solve the
following linear system after solving the quadratic program above :

o’ = (2l + 27 Z_II)QLK)*lJTYﬂ* (11.10)

One can note that when y; = 0, the SVM QP and Eqns (11.9,11.10), give zero

expansion coefficients over the unlabeled data. The expansion coefficients over the

labeled data and the Q matrix are as in standard SVM, in this case. Laplacian

SVMs can be easily implemented using standard SVM software and packages for
solving linear systems.
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Laplacian SVM/RLS

Input: I labeled examples {(z;,¥:)}.—1, u unlabeled examples {z; };‘Zl‘ 1

Output: | Estimated function f:R" — R

Step 1 Construct data adjacency graph with (I + u) nodes using, e.g, k nearest
neighbors. Choose edge weights W;;, e.g., binary weights or heat kernel
weights W;; = e~ llei=2ill*/4t,

Step 2 Choose a kernel function K(z,y). Compute the Gram matrix K;; =
K(mi, Zj ) .

Step 3 Compute graph Laplacian matrix : L = D — W where D is a diagonal
matrix given by D;; = ;4:; Wij.

Step 4 Choose y4 and ;.

Step 5 Compute a* using Eqn (11.7) for squared loss (Laplacian RLS) or using
Egns (11.9,11.10) together with the SVM QP solver for soft margin loss
(Laplacian SVM).

Step 6 Output function f*(z) = Zi:? a; K(z;, ).
Equivalently, after step 4 construct the kernel function K (z,y) given by
Egn 11.15, and use it in standard SVM/RLS (or with other suitable kernel
methods).

Figure 11.4 Two Moons Dataset: Laplacian SVM with increasing intrinsic regulariza-

tion.
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In section 11.4, we will discuss a data-dependent kernel defined using unlabeled
examples [20], with which standard supervised SVM/RLS implement Laplacian
SVM/RLS. In Table 1, we outline these algorithms.

The choice of the regularization parameters 4,y is a subject of future research.
If there is enough labeled data, it can be be based on cross-validation or performance
on a held-out test set. In Figure 11.4 we provide an intuition towards the role of these
parameters on a toy two-moons dataset. When v; = 0, Laplacian SVM recovers
standard supervised SVM boundaries. As ~; is increased, the effect of unlabeled
data increases and the classification boundaries are appropriately adjusted.

In Figure 11.3.1 we plot the learning curves for Laplacian SVM/RLS on a two-

Effect of
increasing yr
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Figure 11.5 Image Classification: Laplacian SVM/RLS performance with respect to
number of labeled examples on unlabeled and test data.
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class image recognition problem. In many such real-world application settings, one
may expect significant benefit from utilizing unlabeled data and high-quality out-
of-sample extensions with these algorithms. For further empirical results see [3, 20]
and elsewhere in this book.

11.3.2 Unsupervised Learning and Data Representation
Regularized Spectral Clustering

The unsupervised case can be viewed as a special case of semi-supervised learning
where one is given a collection of unlabeled data points z1, ..., 2z, and no labeled
examples. Our basic algorithmic framework embodied in the optimization problem
in Eqn. 11.3 has three terms: (i) fit to labeled data, (ii) extrinsic regularization and
(iii) intrinsic regularization. Since no labeled data is available, the first term does
not arise anymore. Therefore we are left with the following optimization problem:

. 2 2
n 11.11
i allf e + 17 (11.11)

Of course, only the ratio ']y—“‘ matters. As before ||f||? can be approximated using
the unlabeled data. Choosing || f[|7 = [\ (Vauf, Vo f) and approximating it by the
empirical Laplacian, we are left with the following optimization problem :

fr= argmin WG+ D (f f(zy))? (11.12)
i Flei)=0; ¥; f(=;)%=1 inj
feEHK
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Figure 11.6 Two Moons Dataset: Regularized Clustering
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Note that without the additional constraints (cf. [4]) the above problem gives
degenerate solutions.

As in the semi-supervised case, a version of the empirical Representer theorem
holds showing that the solution to Eqn. 11.12 admits a representation of the form

=Y aK(;,-)
i=1

By substituting back in Eqn. 11.12, we come up with the following optimization
problem:

a = argmin v|f||% + Z(f(ﬂh) - f(z;))?

1T Ka=0
aTK2a=1

i~
where 1 is the vector of all ones and a = (a1,...,a,) and K is the corresponding
Gram matrix.

Letting P be the projection onto the subspace of R* orthogonal to K1, one
obtains the solution for the constrained quadratic problem, which is given by the

generalized eigenvalue problem

P(yK + KLK)Pv = APK*Pv (11.13)

The final solution is given by @ = Pv, where v is the eigenvector corresponding to
the smallest eigenvalue.

The method sketched above is a framework for regularized spectral clustering.
The regularization parameter «y controls the smoothness of the resulting function in
the ambient space. We also obtain a natural out-of-sample extension for clustering
points not in the original data set. Figure 11.5 shows this method on a toy two-
moons clustering problem. Unlike recent work [6, 7] on out-of-sample extensions,
our method is based on a Representer theorem for RKHS.
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Regularized Laplacian Eigenmaps

One can take multiple eigenvectors of the system in Eqn. 11.13 and represent a
point x in R™ as:

T Za%K(wi,x),...,Zag’”K(wi,w)
i=1

i=1

where (af ...ad) is the j™ eigenvector.

This leads to new method for dimensionality reduction and data representation
that provides a natural out-of-sample extension of Laplacian Eigenmaps [2]. The
new representation of the data in R™ in optimal in the sense that it best preserves
its local structure (as estimated by the graph) in the original ambient space.

11.3.3 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since
standard supervised algorithms (SVM and RLS) are special cases of manifold reg-
ularization, our framework is also able to deal with a labeled dataset containing no
unlabeled examples. Additionally, manifold regularization can augment supervised
learning with intrinsic regularization, possibly in a class-dependent manner, which
suggests the following learning problem:

l

fr= a;"g}ngin > Vi@iyi ) + vallfllic + 1 EELify + 4 £5L £ (11.14)
M 7=

~|

Here we introduce two intrinsic regularization parameters ], 77 and regularize
separately for the two classes : f;, f_ are the vectors of evaluations of the function
f, and Ly, L_ are the graph Laplacians, on positive and negative examples
respectively. The solution to the above problem for RLS and SVM can be obtained
WLy 0

_ in the Laplacian
1 L-

by replacing 7 L by the block-diagonal matrix
SVM and Laplacian RLS algorithms.

11.4 Data-dependent Kernels for Semi-supervised Learning

Warping an
RKHS

By including an intrinsic regularization term || f||; in addition to the prior measure
of complexity ||f||x of a function f in the RKHS Hg, the algorithmic framework
presented above reflects how unlabeled data may alter our complexity beliefs. This
data-dependent modification of the norm can be viewed as an attempt to appro-
priately warp an RKHS to conform to the geometry of the marginal distribution
(for a discussion, see [20]). This is made precise in the following discussion. The set
of functions in Hx has an associated inner product (f, g)q, for f,g € Hg. Given
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Figure 11.7 Learning in an RKHS

(a) gaussian kernel centered (b) gaussian kernel centered (c) classifier learnt
on labeled point 1 on labeled point 2 in the RKHS

W7\
S

unlabeled data, the space of functions H & containing functions in Hg but with
the following modified inner product:

.= I T
(£:9) e, = (F:9)ac + i le

can be shown to be an RKHS with an associated kernel K. The regularization term
~yall fll i1, in this RKHS provides the same complexity penalty as the joint intrinsic
and ambient regularization terms in Hx. Thus, once the kernel K is available,
one can the employ standard machinery of kernel methods designed for supervised
learning, for semi-supervised inference. The form of the new kernel K can be derived
in terms of the kernel function K using reproducing properties of an RKHS and
orthogonality arguments (see [19, 20] for a derivation) and is given by :

RK(z,2) = K(z,2) -~ kT (I + LLK) 'Lk, (11.15)

YA
where k, (and similarly k,) denotes the vector [K(z1,%),...,K (ml+u,m)]T. The
standard representer theorem can be now be invoked to show that the minimizer
of optimization problem 11.5 admits the following expansion in terms of labeled
examples only:

l
(@) =) aik(wi, @) (11.16)

With the new kernel K , this representer theorem reduces the minimization
problem 11.5 to that of estimating the [ expansion coefficients a*. . In addition to
recovering the algorithms in Section 11.3, this kernel can also be used to implement,
e.g., semi-supervised extensions of support vector regression, one-class SVM and
Gaussian processes (see [21]).

To develop an intuition towards how the intrinsic norm warps the structure of an
RKHS, consider the pictures shown in Figure 11.4. A practitioner of kernel methods
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Figure 11.8 Warping an RKHS

(a) deformed kernel centered (b) deformed kernel centered (c) classifier learnt
on labeled point 1 on labeled point 2 in the deformed RKHS

(@

would approach the two-circles problem posed in Figure 11.1 by choosing a kernel
function K (z,y); and then taking a particular linear combination of this kernel
centered at the two labeled points in order to construct a classifier. Figures 11.6 (a,b)
show this attempt with the popular Gaussian kernel. The resulting linear decision
surface, shown in Figure 11.6 (¢), is clearly inadequate for this problem.

In Figures 11.7(a) and 11.7(b) we see level sets for the deformed kernel K centered
on the two labeled points in the two-circles problem. The kernel deforms along the
circle under the influence of the unlabeled data. Using this kernel, instead of K (z,y),
produces a satisfactory class boundary with just two labeled points, as shown in
Figure 11.7 (c).

The procedure described above is a general non-parametric approach for con-
structing data-dependent kernels for semi-supervised learning. This approach differs
from prior constructions that have largely focussed on data-dependent methods for
parameter selection to choose a kernel from some parametric family, or by defining
a kernel matrix on the data points alone (transductive setting).

11.5 Linear methods for Large Scale Semi-supervised Learning

Linear Manifold
Regularization

To turn semi-supervised learning into a technology, one needs to address issues
of scalability of algorithms and applicability to large datasets. The algorithms we
have described deal with dense matrices of size n x n and have O(n®) training
complexity with naive implementations. The expansion over labeled or unlabeled
examples is in general not sparse, even for Laplacian SVMs. One can possibly
employ, for example, various reduced set methods, low-rank kernel approximations
or sparse greedy methods (see [18] for a discussion of general implementation issues
in kernel methods) for efficient implementation of these algorithms.

Due to their potential for dealing with massive datasets and wide-spread appli-
cability, linear semi-supervised methods generate special interest. The algorithms
described above can easily be specialized for constructing linear classifiers by choos-
ing the linear kernel K (z,y) = x*y. However, if the data-dimensionality d is much
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Linear Laplacian
RLS

Linear Laplacian
SVM

smaller than the number of examples or the data is highly sparse, one can much
more efficiently solve the primal problem directly, once the graph regularizer is
constructed. We can learn a weight vector w € R? defining the linear classifier
f(x) = sign(wTz) as follows:

1

o1
w* = argmin 7 Y V(zi, g3, w":) + vallwll® +
weRe g

I

— " WwTXTLX 11.1
(u+l)2w w  (11.17)

Here, X is the (I + u) x d data matrix.

For Linear Laplacian RLS, taking V to be the squared loss and setting the
gradient of the objective function to 0, we immediately obtain a linear system
that can be solved to obtain the desired weight vector:

(X Xy + yall + #XTLX)w =X'Y (11.18)
Here X; is the sub-matrix of X corresponding to labeled examples and Y is the
vector of labels. This is a d x d system which can be easily solved when d is small.
When d is large but feature vectors are highly sparse, we can employ Conjugate
Gradient (CG) methods to solve this system. CG techniques are Krylov methods
involve repeated multiplication of a candidate solution z by A for solving a linear
system Ax = b. The matrix A need not be explicitly constructed so long as the
matrix vector product Az can be computed. In the case of linear Laplacian RLS,
we can construct the matrix-vector product fast due to the sparsity of X and L1.

For Linear Laplacian SVMs, we can rewrite problem 11.17 as:

l
w* = argminyw! TT w + ! z max [0, 1 — y; (w” z;)]
w inR4 l im1
in terms of the Cholesky factorization TTT of the positive definite matrix (y4I +
X TLX). Changing variables by @ = TTw and # = T~ 'z, we can convert the
above problem into a standard SVM running only on the labeled examples that
are pre-processed with T—!'. When d is small, the pre-processing matrix can be
computed cheaply. The re-parameterized SVM then runs only on a small number
of labeled examples and returns a weight vector @w*. We obtain the solution of
the original problem by setting w* = (TT)_1 w*. We note in passing that the
inner product in the pre-processed space is given by #72 = z7(TTT)"'2. An
application of the Woodbury formula to compute the inverse (TT7)~! followed by
appropriate manipulations gives a simple “feature-space” derivation of the data-
dependent kernel in Section 11.4. For high-dimensional sparse datasets, we can use
the large scale training algorithm in [12] for L2-SVM. At the core of this algorithm
are RLS iterations implemented using conjugate gradient techniques. In conjunction

1. Fast matrix-vector products can also be formed for dense graph regularizers given by
a power series in the (sparse) graph Laplacian
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with Linear Laplacian RLS for large sparse datasets, this algorithm can also be
extended for large scale semi-supervised learning.

11.6 Connections to Other Algorithms and Related Work

The broad connections of our approach to graph-based learning techniques and ker-
nel methods are summarized in Table 1 through a comparison of objectives. When
~vr = 0, our algorithms ignore unlabeled data and perform standard regularization,
e.g in SVMs and RLS. By optimizing over an RKHS of functions defined everywhere
in the ambient space, we get out-of-sample extension for graph regularization, when
v4 = 0,77 > 0. In the absence of labeled examples, we perform a regularized ver-
sion of spectral clustering that is often viewed as a relaxation of the discrete graph
min-cut problem. We can also obtain useful data representations within the same
framework by regularized Laplacian eigenmaps.

Table 11.1 Objective Functions for comparison (In the third column for unsupervised
algorithms, additional constraints are added to avoid trivial or unbalanced solutions). In
addition to these learning problems, the framework also provides the regularized Laplacian
eigenmaps algorithm for dimensionality reduction and data representation.

Supervised Partially Supervised Clustering
Kernel-based Classifiers Graph Regularization Graph Mincut
argmin g q¢ argming e (1+v) argminge 4 qyu
P2 Vi F@) +Ifll | 155 Vi ) +E7LE | 3300 Wii(fi - £5)°
Out-of-sample Extn. Spectral Clustering
argmin peqe argming g %fTLf
1 i=1 V(yi, &) + YT Lf | Out-of-sample Extn.
Manifold Regularization argmingeqe %fTLf
argmin g eq¢, Reg. Spectral Clust.
% 2221 V(yi, f(zi)+ argmin e g,
allfllk + i tTLE | HTLE 4ol

The conceptual framework of our work is close, in spirit, to the measure-based
regularization approach of [8]. The authors consider a gradient based regularizer
that encourages smoothness with respect to the data density. While [8] use the
gradient V f(z) in the ambient space, we use the gradient over a submanifold Vi f.
In a situation where the data truly lies on or near a submanifold M, the difference
between these two penalizers can be significant since smoothness in the normal
direction to the data manifold is irrelevant to classification or regression.

The intuition of incorporating a graph-based regularizer in the design of semi-
supervised variants of inductive algorithms has been also been explored in [24,
15, 13]. In [24], a least squares algorithm is proposed that provides an out-of-
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sample extension for graph transduction in the span of a fixed set of basis functions
{¢i : X = R};_,. Thus, the optimization problem in 11.5 is solved over this span
for the squared loss leading to a linear system such as Eqn. 11.18 (set X;; = ¢;(z;)
and y4 = 0) whose size is given by the number of basis functions s. For a small
set of basis functions, this system can be solved more efficiently. [24] also discusses
data representation within this framework.

In [15], the authors impose a prior derived from the graph Laplacian, over
parameters of a multinomial logistic regression model. For an r-class problem, the
class probabilities are modeled as:

w(')Tm

T wOT g
Zi:1 €

where y7) is an indicator variable for class j and w(® € R? is the weight vector for
class i. The prior on weight vector w(?) is given by:

P(yY = 1jz) = 1<j<r

—w®T (y}i)XTLX + Dw) w®T
2

Pw) « exp

where D(9 is a parameterized diagonal matrix providing extra regularization similar
to the ambient penalty term in Manifold regularization. Bayesian inference is per-
formed to learn the maximum a posteriori (MAP) estimate of the model parameters
with an Expectation-Maximization algorithm.

In [13], an extension of the Adaboost algorithm is proposed (also discussed
elsewhere in this book) that implements similar intuitions within the framework of
Boosting techniques. In [1], a generalization of the problem in Eqn. 11.5 is presented
for semi-supervised learning of structured variables.

By introducing approximations to avoid graph re-computation, methods for out-
of-sample extension have also been suggested without explicitly operating in an
ambiently defined function or model space. In [10] an induction formula is derived
by assuming that the addition of a test point to the graph does not change the
transductive solution over the unlabeled data. In other words, if £ = [f1 ... fitu fi]
denotes a function defined on the augmented graph, with f; as its value on the node
corresponding to the test point, then minimizing the objective function for graph
regularization (with L as the regularizer) keeping the values on the original nodes
fixed, one can obtain a Parzen windows expression for f;:

_ i Weifi
Ei Wi

where W denotes the adjacency matrix as before. In [25], a test point is classified
according to its nearest neighbor on the graph, whose classification is available
after transductive inference. In [9], graph kernels are constructed by modifying
the spectrum of the gram matrix of a kernel evaluated over labeled and unlabeled
examples. Unseen test points are approximated in the span of the labeled and

Tt
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unlabeled data, and this approximation is used to extend the graph kernel.

The regularized Laplacian eigenmap algorithms presented in 11.3.2 has also been
simultaneously and independently developed by [23] in the context of extending a
partially known graph. The graph inference problem is posed as follows: Suppose
a graph G = (V, E) with vertices V and edges F is observed and is known to be
a subgraph of an unknown graph G' = (V',E') with V C V' and E C E'. Given
the vertices V' — V, infer the edges E' — E. If the vertices v are elements of some
set 'V on which a kernel function K : V x V is defined, then one can infer the graph
in two steps: Find a map 9 : V — R™ and induce a nearest neighbor graph on
the embedded points. To find the map ¢ in the RKHS corresponding to K, one
can setup an optimization problem (similar to that in regularized classification),
involving a graph Laplacian based “data fit” term that measures how well 9
preserves the local structure of the observed graph and the RKHS regularizer that
provides ambient smoothness. This is also the objective function of regularized
Laplacian Eigenmaps, and involes solving the generalized eigenvalue problem 11.13
for multiple eigenvectors.

11.7

Future Directions

We have discussed a general framework for incorporating geometric structures in
the design of learning algorithms. Our framework may be extended to include
additional domain structure e.g in the form of invariances and structured outputs.
Many directions are being pursued towards improving the scalability and efficiency
of our algorithms, while developing extensions to handle unlabeled data in, e.g.,
support vector regression, one class SVMs and Gaussian processes. We plan to
pursue applications of these methods to a variety of real-world learning tasks, and
investigate issues concerning generalization analysis and model selection.
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