
One-Class Matrix Completion with Low-Density Factorizations

Vikas Sindhwani∗, Serhat S Bucak†, Jianying Hu∗ and Aleksandra Mojsilovic∗
∗Business Analytics and Mathematical Sciences

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Email: {vsindhw,jyhu,aleksand}@us.ibm.com

†Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824
Email: bucakser@msu.edu

Abstract—Consider a typical recommendation problem. A
company has historical records of products sold to a large
customer base. These records may be compactly represented
as a sparse customer-times-product “who-bought-what” binary
matrix. Given this matrix, the goal is to build a model
that provides recommendations for which products should
be sold next to the existing customer base. Such problems
may naturally be formulated as collaborative filtering tasks.
However, this is a one-classsetting, that is, the only known
entries in the matrix are one-valued. If a customer has not
bought a product yet, it does not imply that the customer has
a low propensity to potentiallybe interested in that product. In
the absence of entries explicitly labeled as negative examples,
one may resort to considering unobserved customer-product
pairs as either missing data or as surrogate negative instances.
In this paper, we propose an approach to explicitly deal with
this kind of ambiguity by instead treating the unobserved
entries as optimization variables. These variables are opti-
mized in conjunction with learning a weighted, low-rank non-
negative matrix factorization (NMF) of the customer-product
matrix, similar to how Transductive SVMs implement the
low-density separation principle for semi-supervised learning.
Experimental results show that our approach gives significantly
better recommendations in comparison to various competing
alternatives on one-class collaborative filtering tasks.

Keywords-Collaborative Filtering; NMF; Implicit Feedback;
Matrix Completion

I. I NTRODUCTION

Recommender systems have become increasingly impor-
tant tools to help users efficiently sort through a large
number of offered items and services and focus on the ones
that are mostly likely of interest. Broadly speaking, recom-
mender systems are typically based on one of two alternative
strategies. Thecontent based approachcreates profiles that
capture the characteristic features of users and items, and
uses these features to identify likely linkage/affinity between
a user and an item. The main difficulty with this approach
is that it is often laborious and some times impossible to
collect the external information needed to create the profiles.
In contrast, thecollaborative filteringapproach relies only
on past user activities as recorded in transaction history
or satisfaction ratings. Besides the reduced burden on data
collection , another major appeal of collaborative filtering is
that it is domain agnostic. For example, the same algorithm
can be expected to apply equally well to consumers in an

e-commerce setting (e.g., Amazon) and corporate customers
of a large IT company (e.g., IBM).

The recently concluded million-dollar Netflix competi-
tion has catapulted collaborative filtering and, in particular,
matrix factorization techniques, to the forefront of recom-
mender technologies [1]. However, these methods rely on
the availability of explicit feedback, and it is well known that
their performance is bounded by the number of observed ma-
trix entries. In a Netflix-like setting, the user-movie matrix
consists of three kinds of entries: positive ratings expressing
viewing preferences, negative ratings expressing dislike, and
unrated movies that may be simply considered as missing
data to be estimated. On the other hand, many application
settings inherently generate one-class (i.e., positive only)
datasets, since the knowledge required for labeling examples
as negative is typically not available explicitly and difficult
to collect. In such cases, the observed events are reliable
indicators of what the user liked. However, there is no
explicit information about what the user did not like, because
the unobserved user-item pairs can be interpreted in many
different ways. For example, the reason why a user did not
purchase a product could be that she was simply not aware
of it.

With positive-only data, matrix factorization models may
be learnt by treating zeros (unobserved entries) as missing
data. This is an intuitively suboptimal strategy since it
attempts to learn only from a very small set of positive
examples. At the other extreme is the strategy of treating
zeros as negative. This too seems suboptimal in that a user-
item pair that may turn positive in the future is marked as a
low-affinity (negative) example. The latter methodology does
have the advantage that if most zeros are indeed negative,
then the latent factors provide a representation where high-
affinity user-item pairs can be better discriminated against
the low-affinity ones, modulo labeling errors that are intro-
duced by markingall zeros as negative.

We formulate a new strategy that avoids either extreme
by means of explicit optimization. We treat the associated
user-item pair as an optimization variable. The latent factors
and these discrete label variables are learnt simultaneously.
We propose a novel procedure to minimize the associ-
ated objective function, drawing from global optimization

techniques (deterministic annealing/continuation/homotopy
methods) for combinatorial and non-convex problems. These
techniques have been utilized in the context of Low-density
separation in Semi-supervised SVMs [2], [3]; but here, they
are applied in conjunction with NMF optimization.

II. BACKGROUND AND RELATED WORK

A large number of techniques have been proposed for
collaborative filtering (see, e.g., [4], [5], [6], [7], [8]),
with some extensions to incorporate additional user-item
attributes [9], [10]. In a typical matrix factorization approach
to collaborative filtering, a customer and a product are
represented as unknown feature vectorsw, h ∈ R

k whose
dimensions are considered ask latent factors. These feature
vectors are learnt so that inner productswT h match the
known preference ratings. This is equivalent to the prob-
lem of building weightedapproximations of the preference
matrix where weights are chosen such that known ratings are
emphasized in measuring the quality of the approximation.
Various models (see [11], [1]) differ in the approximation
criteria or the loss function they employ, and the kinds of
regularization used to avoid overfitting.

One-class matrix factorization is a relatively recent theme
of research, despite the ubiquity of recommendation tasks
where they could be used. [12], [13], [14] are recent
papers that propose weighting and sampling schemes to
handle one-class settings with unconstrained factorizations1

based on the squared loss. The essential idea is to treat
all non-positive user-item pairs as negative examples, but
appropriately control their contribution in the objective
function via either uniform, user-specific or item-specific
weights. Our formulation in this paper subsumes these ideas
as special cases. Preliminary experiments show that our
proposed method outperforms the global, user and item
weighting schemes suggested by [12].

Several recent papers [15], [16], [17] have considered the
general problem ofMatrix Completionfrom few observed
entries. A surprising recent result [15], [16] states that
an unknown low-rank matrix can be exactly recovered,
under certain conditions, by solving the convex optimization
problem of finding, among all matrices consistent with
the observed entries, the one with minimum nuclear norm
(sum of singular values). Note that these results do not
apply to one-class settings where a rank-one matrix fits
the observed matrix entries perfectly. This makes the one-
class matrix completion problem radically different, and one
that needs additional assumptions beyond low-rank to be
approximately recovered. We introduce the notion oflow-
densityassumption (i.e., the cluster assumption in the semi-
supervised classification [18]), in addition to low-rank, to be
able to address one-class settings. Under this constraint,one

1Note: by “matrix factorization” we typically mean “matrix approxima-
tion” since exact factorization is not the goal here.

factor encodes low-density linear separators with respectto
the point cloud induced by the other factor.

III. F ORMULATION

Let X be a m × n binary matrix, such as a typical
who-bought-what customer-product matrix. The set of non-
zeros,L = {(i, j) : Xij = 1}, denotes customer-product
purchases.Xij = 0 means that no purchase was made, but
is not strictly a negative example. We will useU = {(i, j) :
Xij = 0} to denote these “unlabeled” examples.

We assume that customers and products can be rep-
resented in an unknown lower-dimensional feature space,
where features correspond to latent variables. LetW =
[w1, . . . , wm]

T be anm × k matrix whoseith row, wi, is
thekth dimensional representation of a customer. Similarly,
let H = [h1, . . . , hn] be ak × n matrix whosejth column,
hj , is thekth dimensional representation of a product. Then,
weighted non-negative matrix factorization (WNMF) solves:

arg min
W≥0,H≥0

λ‖W‖2
F +γ‖H‖2

F +
∑

(i,j)∈L

CijV (Xij , w
T
i hj) (1)

whereV is a loss function (i.e., squared loss or generalized
KL-divergence). For flexibility, we allow entry specific costs
Cij ≥ 0. The real-valued parametersγ ≥ 0 and λ ≥ 0
tradeoff the regularizers against the data-fit terms. The
above problem can also be solved without non-negativity
constraints; however, learning non-negative factors is natural
for non-negative data and lends “part-based” interpretability
to the model [19], [20] . After learningW,H, the data matrix
is reconstructed aŝX = WH. The (i, j) customer-product
pair for which X̂ij is large are then recommended.

In a one-class setting, the loss function runs only over
(i, j) pairs such thatXij = 1. Since the loss function does
not include zero-valued pairs, this corresponds to treating
zeros as missing values. We refer to this approach asZAM

(zeros-as-missing) approach. An alternative approach is to
treat zeros as negative examples,ZAN (zeros-as-negative).
Note that theZAN model is biased towards producing low-
scores for products that a customer has not bought before,
which may not be an accurate assumption. In this paper, we
consider an alternative betweenZAM andZAN . We call it
ldNMF , which stands forlow-density non-negative matrix
factorizations, given the conceptual similarity to low-density
methods in semi-supervised earning [18]. TheldNMF

problem can be formulated as:

arg min
W≥0,H≥0

yij∈{0,1},(i,j)∈U

J
(

W,H, {yij}(i,j)∈U

)

=

λ‖W‖2
F + γ‖H‖2

F +
∑

(i,j)∈L

CijV (Xij , w
T
i hj)

+
∑

(i,j)∈U

CijV (yij , w
T
i hj) (2)

where J
(

W,H, {yij}(i,j)∈U

)

is the objective function
whose first two optimization variables are the latent factors,
W,H, while the third set of variables are discrete{0, 1}-
valued variables, i.e.,yij = 1 implies positive class while
yij = 0 implies negative class.

We will solve the optimization problem of Eq. (2), subject
to the constraint that a certain user-specified fraction of the
optimization variables are positive, i.e.1

|L̄|

∑

(i,j)∈U yij =
2r−1, wherer will be a user-specified parameter which we
will refer to as thepositive class ratio. Similar constraints are
added in the formulations for Semi-supervised SVMs [18].
Note some special cases ofldNMF . If we setr = 0, then
yij = 0, (i, j) ∈ U , we are lead back to theZAN model.
When we setCij = 0, (i, j) ∈ U , the ldNMF model
trivially reduces toZAM .

IV. OPTIMIZATION ALGORITHMS

We propose a simple alternating minimization algorithm.
For any fixed setting of theyij variables, the sub-problem
of optimizing W,H is a weighted NMF and a large family
of techniques can in principle be brought to bear here (see
[20] for a review).

The other sub-problem, that of optimizingyij , (i, j) ∈ U

keepingW andH fixed, is a discrete optimization problem.
There are two problems to address;(i) we need to addition-
ally satisfy class balance constraint, and(ii) by aggressively
committing to discrete labels early in the optimization,
the procedure runs the risk of getting trapped in a sub-
optimal local minima. To address the latter issue, we focus
on deterministic annealing/homotopy methods given their
robustness to presence of sub-optimal local minima. These
are well-known techniques for handing discrete optimization
variables. We point the reader to [3], [2] for an overview.
Operationally speaking, they involve the following steps:

1) Relax discrete variablesyij to real valued
probability-like variablespij . Instead of optimizing
J(W,H, {yij}ij∈U) with respect toyij , optimize the
expected value of it under the probabilitiespij .

2) Smooth the new objective function, such that as the
smoothing parameter is varied, we solve a sequence of
optimization problems of increasing difficulty where
the solution of an easier optimization problem is used
as the starting point of a harder optimization. This kind
of smoothing protects against local minima.

Let pij denote the probability thatyij = 1. The modified
optimization problem is the following,

arg max
W≥0,H≥0,{pij}(i,j)∈U

JT (W,H, {pij}ij∈U) =

λ‖W‖2
F + γ‖H‖2

F +
∑

(i,j)∈L

CijV (1, wT
i hj)

+
∑

(i,j)∈U

Cij

(

pijV (1, wT
i hj) + (1 − pij)V (0, wT

i hj)
)

−T
∑

(i,j)∈U

H(pij) subject to:
1

|U |

∑

ij

pij = r (3)

The third line in the equation above represents the
expected loss under the probabilitiespij . The last term
H(p) = −p log(p) − (1 − p) log(1 − p) is the smoothing
function measuring entropy. WhenT is very high, entropy
is maximized atpij = r. This corresponds to essentially
solving a softer version ofZAN (letting the negative label
be r instead of0). As T is decreased, the optimalpij can
be shown to progressively harden to discrete variables.

We outline an alternating optimization procedure to min-
imize JT (·, ·, ·). First, let us assumeT is fixed. Our block
descent procedure first optimizesW and H (NMF), while
keepingpij ’s fixed. Then keepingW,H fixed, we optimize
pij ’s under the class ratio constraint. This is a convex
problem that can be solved exactly.

A. OptimizingW,H for fixedpij variables

For fixedp, the optimization overW,H involves the first
four terms of Eq. (3). Adding a constant term

∑

ij Cijp
2
ij ,

the forth term of Eq. (3) can be expressed as
∑

ij Cij(pij −

wT
i hj)

2. Thus, it is easy to see thatW and H can be
obtained by solving,

arg min
W,H

λ‖W‖2
F + γ‖H‖2

F + ‖C⊗0.5 ⊗
(

X̂ − WH
)

‖2
F (4)

where we use the following notation:̂X = (X + P),
A ⊗ B denotes elementwise product between matricesA

andB, (C⊗0.5)ij =
√

Cij , P is the matrix of optimization
variables, whose elements equalpij when (i, j) ∈ U and0
when(i, j) ∈ L. Thus, the sub-problem of minimizingW,H

for fixed pij ’s is the weighted NMF problem of Eq. (4).
The solution can be obtained by alternating between the
following two multiplicative update steps,

H = H ⊗
WT [C ⊗ (X + P)]

WT [C ⊗ (WH)] + γH
(5)

W = W ⊗
[C ⊗ (X + P)]HT

[C ⊗ (WH)] HT + λW
(6)

where division is elementwise. Once inside this sub-routine,
steps in Eqs. (5) and (6) are repeatedly performed until
relative improvement in the NMF objective function falls
below some user-specified tolerance, or a maximum number
of iterations are exceeded.

B. Optimizingpij variables for fixedW,H

For fixed W,H, the optimization overpij involves the
fourth and fifth term in the objective function of Eq. (3), sub-
ject to the balance constraint. Letν be the Lagrange multi-
plier corresponding to the balance constraint,1

|U |

∑

ij pij =

r. By defininggij = Sij [V (1, oij) − V (0, oij)], forming the

Lagrangian and settings its gradient to 0, the optimalpij can
be shown to be given by,

pij =
1

1 + e
gij−ν

T

(7)

where ν can be found by substituting the above in the
balance constraint and solving:

1

|U |

∑

ij∈U

1

1 + e
gij−ν

T

= r (8)

The root is computed by using a hybrid combination
of Newton-Raphson iterations and the bisection method
together with a carefully set initial value [3].

C. Complexity & Large-Scale Implementation

In this subsection, we first examine the complexity of a
naive implementation. Then we show how special structure
of the cost matrixC together with sparsity inX, and choice
of a sparse set of optimization variablesP allow us to scale
to very large datasets. We use the notationnz[A] to denote
the number of non-zeros in the matrixA.

Consider the update ofH in Eq. (5). The overall com-
plexity is O(nz[X + P]k + mnk) and is clearly prohibitive
for large m,n requiring also the computation of a large
dense intermediate matrixWH. This complexity calculation
assumes that (a) there is no structure inC that can exploited
for more efficient computations, (b) the matrixX + P is
dense. Now we show how to scale up by relaxing these
assumptions:
• We assumeP is p-sparse i.e., hasp non-zero entries.

This corresponds to only optimizing a subset ofpij vari-
ables and fixing the rest to zero values. In this paper, for
large-scale experiments, we take a random subset to be
optimization variables though a judicious choice for it is
an interesting technical problem.
• We assumeC is an arbitrary low-rank non-negative

matrix of the formC =
∑q

i=1 δiφ
T
i , where ∀i : δi is

a column vector of lengthm, ∀i : φi is a column vector
of length n, and q ≪ min(m,n) is the rank ofC. The
way we can utilize this structure is due to an easy-to-see
connection between Hadamard (elementwise) products and
Rank-one matrices:C ⊗ F =

∑q
i=1 Dδi

FDφi
whereF is

anym×n matrix and the notationDv implies is a diagonal
matrix with diagonal elements equal to the elements of the
vector v. In practice, we want to apply these weights only
to unlabeled entries and retain a weight of 1 for labeled
positive entries. This can be achieved as follows,

C ⊗ F =

q
∑

i=1

Dδi
FDφi

− Dδi
(CL ⊗ F)Dφj

+ (CL ⊗ F)

whereCL is 1 for positive entries and0 otherwise. In other
words, CL = X. When F = (X + P), this computation

can be carried out inO(qp) steps for the numerator. In the
denominator, we make use of the following rearrangement:

WT (C ⊗ (WH)) =

q
∑

i=1

(

WT Dδi
W

)

HDφi

−WT Dδi
(CL ⊗ (WH)) Dφj

+ WT (CL ⊗ (WH)) (9)

(C ⊗ (WH)) HT =

q
∑

i=1

Dδi
W (HDφi

HT)

−Dδi
(CL ⊗ (WH)) Dφj

HT + (CL ⊗ (WH)) HT (10)

The key observation is that sinceCL is sparse,CL ⊗
(WH) is a sparse matrix whose computation only requires
the productWH to be evaluated whereCL is non-zero.
Thus, this is aO(pk) operation. The overall complexity is
O((m+n)qk2 +qpk) which is much smaller than the naive
implementation.

Solving the one-dimensional root finding problem in
Eqn. 8 has negligible cost relative to the weighted NMF
updates.

In summary, the use of low-rank cost matrices,C in
conjunction with a sparse set of optimization variables leads
to large-scale implementations. In practice, we use the rank-
one setting whereδ1 gives weights for users andφ1 gives
weights for items as in [13], [14].

In Section V, we report the performance ofldNMF at
a fixed value ofT , and study the sensitivity to this choice
with respect to recommendation quality. In a full annealing
implementation (not reported in this paper),T is gradually
reduced to0. Our convergence criteria is based on relative
difference between KL-divergence ofpij variables between
successive iterations, as also used in [2].

V. EMPIRICAL STUDY

Comparisons with Other One-Class Approaches: The
first baseline method we are using,Popularity, is based
on popularity of the items among users and the number
of each user’s past purchases. We mentioned the next two
(ZAM and ZAN) earlier in the paper as natural one-class
approaches. We also use three types of weightedZAN: (i)
wZAN (unif): a weighted version of ZAN where zeros are
treated as negatives, but a uniform weight with value less
than 1 is additionally imposed, (ii) wZAN (item-oriented):
column weighting on the user-item matrix, (iii) wZAN (user-
oriented): row weighting on the user-item matrix. These
weighted ZAN schemes were proposed in [12], [13] and
implemented with unconstrained factorizations; here, we
apply them with NMF.

Evaluation Protocol: Recommender Systems typically
show great variability with respect to choice of evaluation
measure [21]. One-Class Collaborative Filtering experiments
in [13] showed that no single technique tends to dominate
with respect to all metrics. In this paper, we considered two

Table I
COMPARISON OF ALL METHODS IN TERMS OFAREA UNDER ROC CURVE AND AREA UNDER PRECISION-RECALL CURVE. NOTE THAT THE

PARAMETERS OF BASELINE METHODS ARE CAREFULLY OPTIMIZED. ldNMF GIVES STATISTICALLY SIGNIFICANT IMPROVEMENTS IN ALL CASES.

Methods AUC-ROC AUC-PrRc
rank = 5 rank = 10 rank = 15 rank = 5 rank = 10 rank = 15

Popularity 49.5± 0.4 49.5± 0.4 49.5± 0.4 0.9 ± 0.01 0.9 ± 0.01 0.9 ± 0.01
ZAM 41.6± 3.7 42.3± 4.2 41.6± 3.7 0.9 ± 0.01 0.9 ± 0.01 0.9 ± 0.01
ZAN 72.4± 0.4 73.5± 0.4 73.1± 0.3 0.9 ± 0.01 0.9 ± 0.01 0.9 ± 0.01

wZAN (unif) 72.6± 0.5 73.6± 0.4 73.3±0.3 20.9±0.2 22.7± 0.3 22.3± 0.2
wZAN (item) 72.9± 0.5 73.9± 0.3 73.7± 0.34 20.9±0.2 22.8± 0.3 22.5± 0.3
wZAN (user) 71.5± 0.26 72.0± 0.3 71.6± 0.3 11.5±0.1 13.1± 0.2 13.0± 0.2

ldNMF (proposed) 74.8± 0.3 75.2± 0.3 74.9± 0.2 21.4± 0.3 23.3± 0.3 23.3± 0.4

Table II
COMPARISON OF ALL METHODS IN TERMS OF TRAINING TIME(SEC)

Methods↓ Rank→ 5 10 15

Popularity 17 17 17
ZAM 330 400 375
ZAN 687 1044 1589

wZAN (unif) 747 868 1591
wZAN (item) 1056 1301 1982
wZAN (user) 703 881 1600

ldNMF (proposed) 1531 1785 1788

Table III
SENSITIVITY TO r AND T

r 0.001 0.01 0.1 0.3 0.5 0.7
AUC-PrRc 23.1 23.3 23.5 22.8 21.0 16.2
AUC-ROC 73.9 74.7 74.5 71.0 71.0 66.2

T 0.1 1 10 50 100 1000
AUC-PrRc 7.6 23.5 23.5 23.5 23.5 23.5
AUC-ROC 72.4 74.6 74.5 74.5 74.5 74.5

evaluation metrics: area under precision-recall curve (AUC-
PrRc) and area under ROC curves (AUC-ROC). We also
carefully optimized the baselines approaches over a large
set of parameters and then observed whether the proposed
method could further lead to performance improvements.

Small Scale Experiments on MovieLens: We first con-
ducted experiments on the MovieLens dataset publically
available at:http://www.grouplens.org/. The data consists of
100,000 ratings on an integer scale from 1 to 5 given to
1642 movies by 943 users. For one-class experiments, we
removed all 3 and below ratings, and relabeled ratings 4
and 5 as 1, to then pose the task of recommending movies
given user preferences alone. We created random training-
test splits of positive customer-movie pairs in the ratio 75%-
to-25% respectively. All results reported in this section are
averaged over10 random splits. We also use this dataset for
a detailed study of comparison against baseline methods and
sensitivity to parameters.

In Tables I and V we report AUC-PrRc, AUC-ROC and
the training times respectively, for each of the6 baselines,
and compare them withldNMF for three choices of rank.
For simplicity, for all methods, we choseγ = λ = 0. All
baseline methods were initialized from the same initial ran-
domW,H, and the number of matrix factorization iterations
are fixed.

As expected, since it only uses a small set of positive
examples,ZAM returns the worst performance. Popularity
also does not give good results.ZAN performs substan-
tially better thanZAM and Popularity-based schemes. The
performance of ZAN tends to improve with user-oriented
weighting, but becomes comparable with item-oriented and
uniform weightings.ldNMF gives statistically significant
improvements for both precision-recall and ROC evaluation

with only a small increase in overall training time.
We report performance sensitivity tor in Table III (first

3 rows) keepingT fixed at10. Similarly, keepingr fixed at
0.1, in Table III (last 3 rows) we report performance sensitity
with respect to choice ofT . We see thatldNMF tends to be
robust to the selection ofr, as the performance is stable for
r ∈ [0.001, 0.2]. Large values ofr clearly enforce incorrect
priors and naturally lead to loss of accuracy. With regards to
sensitivity with respect to choice ofT , we see thatldNMF

tends to be very stable.
Large-Scale Experiments on Netflix Dataset: We con-

ducted large-scale experiments on the Netflix Prize dataset
where we considered the one class “who-rated-what” prob-
lem i.e., whether a user rated a movie (a KDD Cup 2007
task). The Netflix matrix represents480, 189 users and
17770 movies with around100 million ratings. We con-
sidered a sparsity setting where a random set of20 million
ratings are available in a training matrix while the remaining
80 million are used for evaluation. We implemented the
modified update equations developed in Section IV-C where
we took a massive set of20 million ratings as optimization
variables. Table V lists the performance obtained by various
methods. Recall that WeightedZAN treats zeros as neg-
atives and imposes uniform, user or item specific weights
on them. We apply the same weights in our large-scale
algorithm to demonstrate the ability to incorporate low-rank
cost matrices.

Table V shows the computational performance on the
netflix dataset in terms of observed increasing improvements
in AUC-ROC as the optimizations progresses over time for
ldNMF (with a uniform cost matrix). The experiments
were conducted on a cluster with nodes having ordinary
CPU/memory configurations. These results clearly show that

Table IV
PERFORMANCE ONNETFLIX

DATASET

Method AUC-ROC
ZAM 51.3
ZAN 74.4

wZAN (uniform) 77.3
wZAN (item) 75.5
wZAN (user) 93.8

ldNMF (uniform) 96.1
ldNMF (item) 93.8
ldNMF (user) 94.2

Table V
COMPUTATIONAL

PERFORMANCE(SECS)

Time AUC-ROC
277 94.4
1096 94.7
5535 95.0
8671 95.8
11778 96.1

ldNMF can, in practice, be run on large datasets by utiliz-
ing efficient sparse matrix computations to optimize several
millions of variables. Table V shows that a comparison to
baseline methods for various choices of cost matrices. These
results also demonstrate that optimizing a random subset of
variables as outlined in section IV-C can be sufficient for
obtaining improvements. We see consistent improvements
in AUC-ROC.

VI. CONCLUDING COMMENTS

In this paper, we have presented a principled, novel
optimization approach to one-class matrix completion and
collaborative filtering problems. Knowing that the under-
lying matrix is low-rank is insufficient for approximate
recovery in this setting, making it necessary to make ad-
ditional assumptions. We have drawn, both in terms of
intuitions and also in terms of algorithmic frameworks,
from semi-supervised learning methodologies based on the
low-density assumption. Our method jointly learns a non-
negative matrix factorization model for collaborative filter-
ing while optimizing for unknown discrete label variables
using non-convex optimization techniques. Our approach
gives statistically significant improvements over6 competing
alternatives for one-class collaborative filtering with non-
negative matrix factorizations. We are currently studying
the empirical behavior of our approach with respect to
annealing, rank and regularization parameters. We also plan
to extend comparisons to other real-world one-class collab-
orative filtering problems. Between various choices of the
loss function, regularizers, alternative optimization strategies
and case-studies in various applications, we believe that this
topic allows for a rich research agenda.

We close with a word on real-world business deployment
scenario based on our experience. Interpretability is a very
important concern as sellers and marketers not only need
to act on a recommendation, but also have some sense of
how to “pitch” the product. An open research direction is
how to extract interpretability from latent factors and provide
meaningful explanations for why a customer ought to be
sold a recommended product. Also, business evaluation of a
recommender system is somewhat different from measures
like precision and recall. Practical considerations such as

expected revenue and time taken to close a transaction, as
well as the ”non-obviousness” are also important business
factors in judging the value of a recommendation.

REFERENCES

[1] R. B. Yehuda Koren and C. Volinsky, “Matrix factorization
techniques for recommender systems,” inIEEE Computer,
vol. 42 (8), pp. 30–37.

[2] V. Sindhwani, S. Keerthi, and Olivier, “Deterministic anneal-
ing for semi-supervised kernel machines,” inInternational
Conference on Machine Learning, 2006.

[3] V. Sindhwani and S. Keerthi, “Large scale semi-supervised
linear svms,” inSIGIR, 2006.

[4] D. Goldberg, D. Nichols, B. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,” in
Comm. ACM, 35, 1992.

[5] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical anal-
ysis of predictive algorithms for collaborative filtering,” in
UAI, 1998.

[6] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite,
and C. Kadie., “Dependency networks for inference, collabo-
rative filtering, and data visualization.” inJournal of Machine
Learning Research, vol. 1, 2000, pp. 49–75.

[7] J. Rennie and N. Srebro, “Fast maximum margin matrix
factorization for collaborative prediction.” inICML, 2005.

[8] N. Srebro and T. Jaakkola, “Weighted low-rank approxima-
tions,” in ICML, 2003.

[9] P. Melville, R. Mooney, and R. Nagarajan, “Content-boosted
collaborative filtering for improved recommendations,” in
AAAI, 2002.

[10] T. E. J.-P. V. J. Abernethy, F. Bach, “A new approach
to collaborative filtering: Operator estimation with spectral
regularization,” inJMLR, vol. 10, 2009, pp. 803–826.

[11] T. K.-I. N. A. S. Miklo Kurucz, Andras A. Benczur and
B. Torma., “Who rated what: a combination of svd, corre-
lation and frequent sequence mining.” inKDD, 2007.

[12] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,
and Q. Yang, “One-class collaborative filtering,” inICDM,
2008.

[13] R. Pan and M. Scholz, “Mind the gaps: Weighting the
unknown in large-scale one-class collaborative filtering.” in
KDD, 2009.

[14] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” inICDM, 2008.

[15] E. Candes and T. Tao, “The power of convex relaxation:
Near optimal matrix completion,”IEEE Transactions on
Information Theory, vol. 56 (5), pp. 2053–2080, 2009.

[16] B. Recht, “A simpler approach to matrix completion,”Journal
of Machine Learning Research (to appear), 2010.

[17] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regu-
larization algorithms for learning large incomplete matrices,”
Journal of Machine Learning Research (JMLR), vol. 11(Aug),
pp. 2287–2322, 2010.

[18] O. Chapelle, V. Sindhwani, and S. Keerthi, “Optimization
techniques for semi-supervised support vector machines,”
JMLR, vol. 9, pp. 203–233, 2006.

[19] D. Lee and H. Seung, “Learning the parts of objects by non-
negative matrix factorization,” inNature, 1999.

[20] A. Cichocki, R. Zdunek, A. Phan, and S. Amari,Nonnegative
Matrix and Tensor Factorizations. Wiley, 2009.

[21] A. Gunawardana and G. Shani, “A survey of accuracy evalua-
tion metrics of recommendation tasks,” inJournal of Machine
Learning Research, vol. 10, 2009, pp. 2935–2962.

