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Abstract

An intuitive approach to utilizing unlabeled
data in kernel-based classification algorithms
is to simply treat unknown labels as addi-
tional optimization variables. For margin-
based loss functions, one can view this ap-
proach as attempting to learn low-density
separators. However, this is a hard opti-
mization problem to solve in typical semi-
supervised settings where unlabeled data is
abundant. The popular Transductive SVM
algorithm is a label-switching-retraining pro-
cedure that is known to be susceptible to lo-
cal minima. In this paper, we present a global
optimization framework for semi-supervised
Kernel machines where an easier problem
is parametrically deformed to the original
hard problem and minimizers are smoothly
tracked. Our approach is motivated from de-
terministic annealing techniques and involves
a sequence of convex optimization problems
that are exactly and efficiently solved. We
present empirical results on several synthetic
and real world datasets that demonstrate the
effectiveness of our approach.

1. Introduction

In this paper, we consider the semi-supervised learn-
ing approach based on optimizing regularization objec-
tive functions jointly over a continuous space of func-
tions and a discrete space of unknown labels. Given
a binary classification problem with l labeled exam-
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ples {xi, yi}
l
i=1 and u unlabeled examples {x′

j}
u
j=1, we

seek a real-valued function f? and a labeling y′? =
{y′?

1 . . . y′?
u } ∈ {−1,+1}u for the unlabeled data, by

solving:

(f?,y′?) = argmin
f∈HK ,y′∈{−1,1}u

J (f,y′) =
λ

2
‖f‖2

K +

1

l

l
∑

i=1

V (yif(xi)) +
λ′

u

u
∑

j=1

V
(

y′
jf(x′

j)
)

subject to:
1

u

u
∑

j=1

max(0, y′
j) = r (1)

where V : R → R is a loss function, HK is a Re-
producing kernel Hilbert space (RKHS) of functions
with kernel K, λ, λ′ are real-valued parameters, and
J denotes the objective function. The constraint in-
corporates prior knowledge about class ratios; r is the
fraction of the number of unlabeled examples belong-
ing to the positive class.

We define the effective loss function V ′

over an unlabeled example x as V ′(f(x)) =
min [V (f(x)), V (−f(x))] corresponding to mak-
ing an optimal choice for the unknown label of x.
Thus, one can formulate an equivalent continuous
optimization problem over HK alone, with V and
V ′ as the loss functions over labeled and unlabeled
examples respectively.

Figure 1 shows the shape of V ′ for common choices of
V . Since small outputs are penalized, decision bound-
aries that pass through a low-density region in the in-
put space are preferred. Thus, this may be seen as
a general approach for semi-supervised learning based
on the cluster assumption: the assumption that the
true decision boundary does not cut data clusters.

The combinatorial nature of this problem due to dis-
crete label variables, or equivalently, the non-convexity
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Figure 1. Effective Loss function V
′
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of the effective loss function V ′ make Eqn. 1 a difficult
problem. Currently available global optimization ap-
proaches (Vapnik & Sterin, 1977; Bennett & Demirez,
1999) for semi-supervised SVMs in Eqn 1 are unrealis-
tically slow for typical problems where unlabeled data
is plentiful. On the other hand, many recent tech-
niques (Joachims, 1999; Chapelle & Zien, 2005; Col-
lobert et al., 2005; Gartner et al., 2005) are suscepti-
ble to local minima on difficult real world classification
problems.

The main contributions of this paper are summarized
as follows: (1) We present a deterministic annealing
framework for global optimization of objective func-
tions of the form in Eqn 1. Our approach gener-
ates a sequence of optimization problems approach-
ing the given problem with gradually increasing com-
plexity. These objective functions are locally mini-
mized; the solution for one problem is seeded to the
next as the initial guess. This strategy falls in a
class of homotopy optimization methods, e.g., see (No-
cedal & Wright, 2000; Dunlavy & O’Leary, 2005),
and can be also interpreted in terms of maximum en-
tropy principles and deterministic variants of stochas-
tic search techniques (Rose, 1998; Hofmann & Buh-
mann, 1997). A related class of techniques is the
Graduated Non-Convexity method of (Blake & Zisser-
man, 1987). Some concurrent work on semi-supervised
learning with similar motivation appears in (Chapelle
et al., 2006). (2) We derive and evaluate an alternat-
ing convex optimization procedure within this frame-
work. This method can utilize off-the-shelf optimiza-
tion techniques for regularization algorithms. For ex-
ample, it yields a large scale semi-supervised L2-SVM
for sparse, linear settings (Sindhwani & Keerthi, 2006)
when implemented in conjunction with specialized pri-

mal methods (Keerthi & DeCoste, 2005). (3) We
present an experimental study demonstrating the im-
portance of the idea of annealing on semi-supervised
tasks. On some difficult classification problems, our
methods show significant improvements over compet-
ing algorithms. Whereas recent efforts for solving
Eqn. 1 have largely focussed on margin loss func-
tions, our experimental study shows that the classical
squared loss can also be very effective.

This paper is arranged as follows: In section 2 we
outline homotopy methods and deterministic anneal-
ing for global optimization. Our algorithms are pre-
sented in section 3 and their empirical performance is
described in section 4. Section 5 concludes this paper.

2. Tracking the Global Minimum

2.1. Homotopy Methods

The intuition for our framework for global optimiza-
tion is simply stated in the following. Consider
an unconstrained optimization problem: find u? =
argminu∈Rn C(u) where the objective function C(u)
may have many possible local minima. Instead of
directly dealing with such a problem, we first con-
struct a related “easier” objective function c(u). The
minimizers of this function are either known, or easy
to compute, for example due to convexity. We then
gradually deform the easy problem to the original
problem by specifying a smooth map, i.e a homo-
topy J (u, T ) parameterized by a real-valued variable
T , so that J (u, t1) = c(u) and J (u, t2) = C(u).
Typically, one chooses a convex homotopy such as
J (u, T ) = (1 − T ) C(u) + T c(u) where 0 ≤ T ≤ 1,
or a global homotopy such as J (u, T ) = C(u) + Tc(u)
where T ∈ [0,∞). In practice, T may be varied over
an interval starting from t1 and ending at t2, in fixed
additive steps or by a fixed multiplicative factor. We
track local minimizers along the deformation path, at
each point starting from the previously computed so-
lution.

Clearly, whether or not this method succeeds in find-
ing a global minimum of C(u) depends strongly on the
choice of the map J (u, T ) and the manner in which
T is varied. For general choices for these, one cannot
guarantee a global minimum since there need not be a
path in the variable T connecting the sequence of local
minimizers to the global minimum, and even if there
is one, there is no apriori guarantee that the minimum
reached at T = t2 is globally optimal. Moreover, in
general, the optimal deformation protocol need not be
monotonically increasing or decreasing in T . Inspite
of these limitations, in typical applications, it is often
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more natural to construct c(u) than to find good start-
ing points. A good choice of the homotopy function
and deformation protocol can drastically reduce local
minima problems in the starting and middle stages of
the optimization process allowing the focus to be on
the globally relevant features of the original objective
function.

2.2. Deterministic Annealing

Deterministic annealing may be viewed as a homotopy
method for dealing with combinatorial optimization
problems. This approach involves two steps. In the
first step, discrete variables are treated as random vari-
ables over which a space of probability distributions
is defined. In the second step, the original problem
is replaced by a continuous optimization problem of
finding a distribution in this space that minimizes the
expected value of the objective function. The latter
optimization is performed by a homotopy method us-
ing negative of the entropy of a distribution as the
“easy”, convex function. Specifically, one solves:

p? = argmin
p∈P

EpC(u) − TS(p) (2)

where u ∈ {0, 1}n are the discrete variables for the
objective function C(u), P is a family of probability
distributions over u, Ep denotes expectation with re-
spect to a distribution p and S(p) denotes the entropy
of p. Note that if T = 0 and P contains all possible
point-mass distributions on {0, 1}n, then the global
minimizer p? puts all its mass on the global minimizer
of C(u). Factorial distributions where the associated
random variables are taken to be independent are one
such class of distributions. With such a choice for P,
the first step of “relaxation” to continuous variables
does not lose any optimality. The task of finding a
minimizer close to the global minimizer in P is then
left to the homotopy method in the second step.

The choice of entropy in the homotopy is well-
motivated in various other ways. If T is non-
zero and P is unrestricted, the minimizer in Eqn. 2
is given by the Gibbs distribution p?

gibbs(u) =
exp (−C(u)/T )

P

{0,1}n exp (−C(u)/T ) . As T 7→ 0, the Gibbs distribution

begins to concentrate its mass on the global minimizer
of C(u). Therefore, a stochastic optimization strategy,
simulated annealing (Kirkpatrick et al., 1983), sam-
ples candidate solutions from a Markov process whose
stationary distribution is the Gibbs distribution, while
gradually lowering T . In deterministic annealing, one
attempts to find a distribution in P that is closest to
the Gibbs distribution in the sense of KL-divergence,
resulting in an optimization problem that is equivalent
to Eqn. 2 (Bilbro et al., 1991). Finally, one can also

interpret this approach in terms of maximum entropy
inference (Rose, 1998).

3. Semi-supervised Kernel Machines

We now apply deterministic annealing to solve Eqn. 1
which involves a mix of discrete and continuous vari-
ables. The discussion above motivates a continuous
objective function,

JT (f,p) = EpJ (f,y′) − TS(p) (3)

defined by taking the expectation of J (f,y′) (Eqn. 1)
with respect to a distribution p on y′ and including
entropy of p as a homotopy term. Thus, we have:

JT (f,p) =
λ

2
‖f‖2

K +
1

l

l
∑

i=1

V (yif(xi))

+
λ′

u

u
∑

j=1

[

pjV
(

f(x′
j)

)

+ (1 − pj)V
(

−f(x′
j)

)]

+
T

u

u
∑

j=1

[pj log pj + (1 − pj) log (1 − pj)] (4)

where p = (p1 . . . pu) and pi may be interpreted as the
probability that y′

i = 1.

This objective function for a fixed T is minimized un-
der the following class balancing constraint, in place
of the balance constraint in Eqn. 1:

1

u

u
∑

j=1

pj = r (5)

As in the formulation of (Joachims, 1999), r is treated
as a user-provided parameter. It may also be esti-
mated from the labeled examples.

The solution to the optimization problem above
(f?

T ,p?
T ) = argminf∈HK ,p∈[0,1]u JT (f,p) is tracked as

the parameter T is lowered to 0. The final solution is
given as f? = limT→0 f?

T . In practice, we monitor the
value of the objective function in the optimization path
and return the solution corresponding to the minimum
value achieved.

3.1. Optimization

For any fixed value of T , the problem in Eqns. 4, 5 is
solved by alternating the minimization over f ∈ HK

and p ∈ [0, 1]u respectively. Fixing p, the minimiza-
tion over f can be done by standard techniques for
solving weighted regularization problems. Fixing f ,
the minimization over p can also be done easily as
described below. While the original problem is non-
convex, keeping one block of variables fixed yields a
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convex optimization problem over the other block of
variables. Both these convex problems can be solved
exactly and efficiently. An additional advantage of
such block optimization is that it allows efficient algo-
rithms for training kernel classifiers to be used directly
within the deterministic annealing procedure. We note
that a similar alternating optimization scheme was
proposed in (Gartner et al., 2005) in the context of
semi-supervised logistic regression. We now provide
some details.

Optimizing f for fixed p

By the Representer theorem, the minimizer over f ∈
HK of the objective function in Eqn. 4 for fixed p is
given as:

f(x) =

l
∑

i=1

αiK(x,xi) +

u
∑

j=1

αl+jK(x,x′
j) (6)

The coefficients α = (α1 . . . αl+u) can be computed
by solving a finite dimensional optimization problem
that arises by substituting this expression in Eqn. 4
where the norm ‖f‖2

K = α
T Kα. The resulting ob-

jective function in α is denoted as JT (α,p). Below
we explicitly write down the solutions for two com-
mon choices of loss functions. One can also solve for
α using other optimization techniques and for other
choices of loss functions.

Regularized Least Squares (RLS)
For Regularized Least squares (RLS), V (t) = (1 −
t)2/2. Setting ∇αJT (α,p) = 0 and solving for α we
obtain:

α = (G + λC)−1Y (7)

where Y = [y1 . . . yl, (2p1 − 1) . . . (2pu − 1)]T , G is the
gram matrix over the l+u points, C is a diagonal ma-
trix whose first l diagonal entries are l and remaining
u diagonal entries are u/λ′. In Eqn. 7, note that the
matrix (G + λC)−1 is independent of p and therefore
needs to be computed only once. Subsequent updates
in the iteration only involve matrix vector products.
Thus, if the inverse (G + λC)−1 can be formed, the
updates for α in the deterministic annealing iterations
are very cheap.

SVM with Quadratic Hinge Loss

The quadratic hinge loss function is given by V (t) =
max(0, 1 − t)2/2. We apply the primal finite newton
methods from (Keerthi & DeCoste, 2005; Chapelle,
2006) to solve Eqn. 4 with this loss. A sequence of
candidate solutions {α(k)} is generated as follows. For
any α

(k) in the sequence, denote the output, as given
by Eqn. 6, on any example x as f (k)(x) and define
the following index sets: i0 = {i : yif

(k)(xi) < 1},

i1 = {j : f (k)(x′
j) ≤ −1}, i2 = {j : f (k)(x′

j) ≥ 1}, and

i3 = {j : |f (k)(x′
j)| < 1}.

Consider the following objective function in the vari-
able α:

J (k)(α) =
λ

2
α

T Kα +
1

l

∑

i0

Vs (yif(xi))

+
λ′

u

[

∑

i1

pjVs

(

f(x′
j)

)

+
∑

i2

(1 − pj)Vs

(

−f(x′
j)

)

+
∑

i3

pjVs

(

f(x′
j)

)

+ (1 − pj)Vs

(

−f(x′
j)

)

]

where Vs(t) = (1 − t)2/2. This objective function is
a local quadratic approximation of the objective func-
tion Eqn. 4 and simply involves squared loss terms.
Denote ᾱ = argminα J (k)(α). This can be com-
puted by solving a linear system that arises by set-
ting ∇αJ

(k)(α) = 0. Finally, obtain α
(k+1) =

α
(k) + δ?(ᾱ − α

(k)) where the step length δ? is ob-
tained by performing an exact line search by solving
the one-dimensional problem δ? = argminδ>0 JT (α +

δ( ¯
α

(k) − α
(k)),p). This can be done using efficient

recursive updates as outlined in (Keerthi & DeCoste,
2005). From the arguments in (Keerthi & DeCoste,
2005), it can be shown that the sequence {αk} start-
ing from any initial point converges in a finite number
of steps to the minimizer (in α) of JT (α,p) for a given
fixed p. By starting the optimization from the solution
of the previous DA iteration (“seeding”), the conver-
gence can be very fast.

Large Scale Implementations

In the case of linear kernels, instead of using Eqn. 6
we can directly write f(x) = wT x where updates for
the weight vector w are obtained by the finite Newton
procedure outlined above. For large scale problems
such as text classification where (l + u) as well as the
dimension of x are possibly large and the data matrix
consisting of the xi has only a small fraction of nonzero
elements, effective conjugate gradient schemes can be
used to implement the updates for w. The result is
an impressively fast algorithm for such problems. See
(Sindhwani & Keerthi, 2006) for full details.

Optimizing p for fixed f

For the latter problem of optimizing p for a fixed
f , we construct the Lagrangian: L = JT (f,p) −
ν( 1

u

∑u
j=1 pj − r). Solving ∂L/∂pj = 0, we get:

pj =
1

1 + e
gj−ν

T

(8)
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where gj = λ′[V (f(x′
j)) − V (−f(x′

j))]. Substituting
this expression in the balance constraint in Eqn. 5,
we get a one-dimensional non-linear equation in ν:
1
u

∑u
j=1

1

1+e
gi−ν

T

= r. The root is computed exactly

by using a hybrid combination of Newton-Raphson
iterations and the bisection method together with a
carefully set initial value.

For a fixed T , the alternate minimization of f ∈ HK

and p proceeds until some stopping criterion is satis-
fied. A natural criterion is the KL-divergence between
values of p in consecutive iterations. The parameter
T is decreased in an outer loop until the total entropy
falls below a threshold. Table 1 outlines the steps for
the algorithm with default parameters. In the rest of
this paper, we will abbreviate our method as DA (loss)
where loss is l1 for hinge loss, l2 for quadratic hinge
loss and sqr for squared loss.

Table 1. Semi-supervised Learning with Deterministic An-
nealing.

Inputs: {xi, yi}
l
i=1, {x

′
j}

u
j=1, λ, λ′, r

Initialize: Set p = (r, . . . , r) ∈ R
u q = p

Set T = 10 R = 1.5 ε = 10−6

loop1 while S(p) > ε (S denotes entropy)

loop2 while KL(p,q) > ε
(KL denotes KL-divergence)

Update α by solving Eqn. 4
for fixed p

Set q = p

Set p according to Eqn. 8
end loop1
T = T/R

end loop2

Return f(x) =
∑l

i=1 αiK(x,xi) +
∑u

j=1 αl+jK(x,x′
j)

3.2. Annealing Behaviour of Loss functions

We can develop a good intuition for the working of our
method by ignoring the balancing constraint in Eqn. 5
and putting together the loss terms in Eqn. 4 for a
single unlabeled example x′

j :

ΦT (f(x′
j), pj) = pjV (f(x′

j)) + (1 − pj)V (−f(x′
j))

+T [pj log pj + (1 − pj) log(1 − pj)]

Keeping f fixed, the optimal value of pj , say p?
j , is

given by Eqn. 8 (with ν = 0). The effective loss func-
tion then becomes V ′

T (f(x′
j)) = ΦT (f(x′

j), p
?
j ).

In Figure 2, we plot V ′
T as a function of f(x′

j) for dif-
ferent settings of T . The sub-plots show the behavior
of V ′

T for common choices of V .

Figure 2. Annealing behavior of loss functions parameter-
ized by T .
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As T is decreased from high to low values, we see in-
terestingly different behavior for different loss func-
tions with respect to their shape in the “inner” inter-
val [−1, 1] (within the margin) and “outer” interval
(outside the margin).

We see that at high values of T , the hinge loss has a
sharp upward slope in the outer interval and is almost
constant in the inner interval. The other loss functions
are unimodal with a minimum at the decision bound-
ary. As T is decreased, the effective loss V ′

T gradually
deforms into the effective loss V ′ in the original objec-
tive function in Eqn. 1 (see Figure 1).

The Transductive SVM implementations of (Joachims,
1999; Chapelle & Zien, 2005) also solve a sequence
of optimization problems with gradually increasing
values of λ′. We refer to these implementations as
JTSVM and ∇TSVM respectively. The respective ef-
fective loss functions are shown in Figure 3. We see
that in all stages of the optimization, unlabeled exam-
ples in the outer interval do not influence the decision
boundary. Other approaches for Transductive SVM,
e.g., (Gartner et al., 2005; Collobert et al., 2005) do
not discuss such an annealing component.

To examine the effectiveness of different annealing
strategies and loss functions, we performed experi-
ments on two toy datasets, 2moons and 2circles,
with highly non-linear cluster structures. These
datasets are shown in Figure 4 (a particular labeling is
shown). For 10 random choices of 2 labeled examples,
we recorded the number of times JTSVM, ∇TSVM
and DA produced a decision boundary perfectly clas-
sifying the unlabeled data. For JTSVM and DA we
report results for Hinge loss (l1) and quadratic hinge
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Figure 3. Loss functions for JTSVM and ∇TSVM param-
eterized by λ

′.
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loss (l2).

The experiment was conducted with RBF kernels.
In Table 2, we report the best performance for
each method over a grid of parameters. We see
that DA out-performs ∇TSVM which performs bet-
ter than JTSVM. In our experiments, DA with Hinge
loss succeeded in every trial for both 2circles and
2moons. On the other hand JTSVM failed everytime
on 2moons and succeeded once on 2circles.

Figure 4.

2moons 2circles

Table 2. Number of successes out of 10 trials.

Dataset → 2moons 2circles

Algorithm ↓
JTSVM (l2) 0 1
JTSVM (l1) 0 1
∇TSVM 3 2
DA (l2) 6 3
DA (l1) 10 10

We believe that as the deformation proceeds, the in-
terplay between the geometric structure of the data
and the inner and outer intervals of the effective loss
function is a key issue for global optimization in semi-
supervised kernel machines based on Eqn. 1. In the
early stages of the optimization, an ideal effective
loss function should make the decision boundary suf-
ficiently sensitive to unlabeled examples that are “far-
away” so that it begins to align with the global ge-
ometry of data clusters. When only local adjustments

Table 3. Datasets with d features; l labeled, u unlabeled, v

validation and t test examples.

Dataset d l u v t

usps2 241 93 1000 32 375
coil6 241 90 1008 30 372

pc-mac 7511 37 1410 13 486

aut-avn 20707 ≥45 ≤35543 - 35587

eset2 617 33 1305 12 1350

need to be done, the remaining optimization can suc-
ceed under weaker deformations. An interesting direc-
tion for future work is the design of general homotopies
using functions other than the entropy in Eqn. 4.

4. Empirical Results

We present an experimental study on a collection of
5 datasets listed in Table 3. usps2 is a subset of the
USPS dataset with images of digits 2 and 5. coil6

is a 6-class dataset derived from a collection of im-
ages of objects viewed from different angles. pc-mac

is a subset of the 20-newsgroup text dataset posing
the task of categorizing newsgroup documents into two
topics: mac or windows. aut-avn is a large-scale text
dataset concerning binary categorization of UseNet ar-
ticles in auto or aviation classes. Finally, eset2 is a
subset of the ISOLET dataset consisting of acoustic
features of isolated spoken utterances of 9 confusible
letters {B,C,D,E,G, P, T, V, Z}. We considered the
binary classification task of separating the first 4 let-
ters from the rest.

Experimental Protocol

Datasets were split into subsets of labeled, unlabeled,
validation and test examples. The sizes of these sub-
sets are recorded in Table 3. Results presented in
Tables 4, 5 are averaged over 10 random splits. For
each method compared, we set λ′ = 1 and recorded re-
sults on each split over the parameter grid defined by
λ = 10−4, 10−3, 10−2, 10−1 and widths for RBF ker-
nels in the range σ = 1/8, 1/4, 1/2, 1, 2, 4, 8 (relative
to a default value based on pairwise distances between
examples in the dataset).

To focus our study on quality of optimization and de-
gree of sensitivity to local minima, we chose to con-
struct stratified splits so that each algorithm compared
was provided an accurate estimate of class ratios. Pa-
rameters were chosen with respect to performance on
the validation set for each split. Since model selec-
tion in semi-supervised settings with very few labels
can often be unreliable and is largely considered to
be an open issue, in Tables 4, 5 we also record the
minimum of the mean error rate achieved over the pa-
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Table 4. Comparison between SVM, JTSVM, ∇TSVM and
DA (all with quadratic hinge loss (l2)). For each method,
the top row shows mean error rates with model selection;
the bottom row shows best mean error rates. u/t denotes
error rates on unlabeled and test sets. Also recorded in
performance of DA with squared loss (sqr).

usps2 coil6 pc-mac eset2

u/t u/t u/t u/t

SVM 8.0/8.2 22.9/23.5 21.1/20.0 20.9/21.8
7.5/7.8 21.5/21.9 18.9/17.9 19.4/19.7

JTSVM 8.8/8.0 21.4/22.8 14.1/11.9 10.4/10.5
7.6/7.2 19.9/21.2 10.4/7.0 9.2/8.9

∇TSVM 7.5/7.7 25.0/24.9 7.6/6.9 12.2/12.7
6.9/7.1 21.4/21.6 5.4/4.5 8.7/9.1

DA 6.5/6.6 15.6/16.4 11.8/9.4 10.8/10.7
(l2) 6.4/6.3 13.6/15.0 5.3/4.8 8.1/8.5

DA 7.3/7.1 16.5/16.7 11.8/9.4 11.6/11.3
(sqr) 5.7/6.3 13.8/15.2 5.4/4.7 9.0/9.4

rameter grid. This experimental setup neutralizes any
undue advantage a method might receive due to differ-
ent sensitivities to parameters, class imbalance issues
and shortcomings of the model selection protocol.

Comparing DA, JTSVM and ∇TSVM

Table 4 presents a comparison between DA, JTSVM
and ∇TSVM. The baseline results for SVM using only
labeled examples are also provided. Being a gradi-
ent descent technique, ∇TSVM requires loss functions
to be differentiable; the implementation in (Chapelle
& Zien, 2005) uses the l2 loss function over labeled
examples and an exponential loss function over unla-
beled examples. The results in Table 4 for DA and
JTSVM were also obtained using the l2 loss. Thus,
these methods attempt to minimize very similar ob-
jective functions over the same range of parameters.

We see that DA is the best performing method on
usps2vs5 and coil6. The performance improvement
with DA is particularly striking on the coil6 dataset
where the TSVM and ∇TSVM performance falls be-
low the SVM baseline. Since this dataset consists of
images of 100 objects randomly grouped into 6 classes,
each class is expected to be composed of several clus-
ters. Gaps in the data space for points within the
same class probably result in many local minima. The
same observations do not hold to the same extent for
the eset2 dataset where the two classes are composed
of acoustic sub-clusters. Here, all methods seem to
perform similarly though DA returns the best mean
performance over the parameter grid. On the pc-mac

text dataset, DA and ∇TSVM out-perform JTSVM.
The difference between DA and ∇TSVM is found to be
minor in terms of best performance achieved on this

dataset. We also observe that these methods yield
good out-of-sample extension to the test set.

Large Scale Text Classification

For the large scale dataset aut-avn, we used the pri-
mal linear methods of (Keerthi & DeCoste, 2005) for
implementing DA and JTSVM (Sindhwani & Keerthi,
2006). Learning curves with respect to varying amount
of labeled data were generated and averaged over 10
random data splits keeping fixed parameter settings of
λ = 0.001 and λ′ = 10.

In the top sub-plot of Figure 5, we show the mini-
mum value of the objective function achieved using DA
and JTSVM with quadratic hinge loss on the aut-avn

dataset as a function of number of labeled examples.
We see that DA performs significantly better optimiza-
tion over the entire range of amount of labeled data.
The middle plot shows the corresponding test error
rate plots. Whereas, DA shows useful improvements
over JTSVM in terms of generalization performance,
these improvements are not as much as one might
expect given that DA finds significantly better solu-
tions. We conjecture that on many textual problems
the objective function indeed has many local minima,
but lower values of it need not necessarily correspond
to significantly lower values in generalization perfor-
mance.

Table 5. Importance of Annealing: DA versus fixed T (no
annealing) optimization. For each method, the top row
shows mean error rates with model selection; the bottom
row shows best mean error rates. u/t denotes error rates
on unlabeled and test sets.

usps2 coil6 pc-mac eset2
u/t u/t u/t u/t

DA 6.5/6.6 15.6/16.4 11.8/9.4 10.8/10.7
6.4/6.3 13.6/15.0 5.3/4.8 8.1/8.5

T=0.1 8.5/8.4 23.9/23.3 12.6/9.9 8.1/8.2
6.6/6.8 20.0/21.0 5.7/4.7 7.8/8.0

T=0.01 8.9/8.2 22.2/23.3 17.1/12.7 12.9/12.0
7.6/7.0 20.1/21.3 7.1/5.7 8.1/8.5

T=0.001 9.0/8.1 23.6/24.4 18.6/13.0 13.5/12.5
7.9/7.2 20.3/21.5 9.1/7.3 8.8/8.8

Importance of Annealing

In Table 5, we show the results obtained with DA for
three fixed values of T with no annealing. We see that
in most cases, fixed T optimization performs worse
than optimization with annealing (gradually decreas-
ing T from high to low values). On coil, the perfor-
mance drop is very significant implying that annealing
may be critical for hard problems. Cases where fixed T
optimization out-performed optimization with anneal-
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Figure 5. aut-avn: Large Scale Text Classification
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ing are shown in bold. However, even in these cases,
annealing actually achieved a lower value of the ob-
jective function but this did not correspond to lower
error rates. In the bottom plot of Figure 5, we see
the learning curves for fixed T optimization and DA
on aut-avn. Here, too, annealing gives significantly
better results.

Performance with Squared Loss

In Table 4 we see that results obtained with the
squared loss are also highly competitive with other
methods on real world semi-supervised tasks. This
is not surprising given the success of the regularized
least squares algorithm for classification problems.

5. Conclusion

We have proposed a deterministic annealing frame-
work for global optimization in semi-supervised kernel
machines. This framework leads to efficient algorithms
that out-perform several competing methods. Under-
standing the details of how annealing behavior, gener-
alization performance and the choice of loss function

are related is the main direction for future work.
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