
An Efficient Method for Gradient-Based Adaptation
of Hyperparameters in SVM Models

S. Sathiya Keerthi
Yahoo! Research

3333 Empire Avenue
Burbank, CA 91504
selvarak@yahoo-inc.com

Vikas Sindhwani
Department of Computer Science

University of Chicago
Chicago, IL 60637

vikass@cs.uchicago.edu

Olivier Chapelle
MPI for Biological Cybernetics

Spemannstraße 38
72076 Tübingen

olivier.chapelle@tuebingen.mpg.de

Abstract

We consider the task of tuning hyperparameters in SVM models based on min-
imizing a smooth performance validation function, e.g., smoothed k-fold cross-
validation error, using non-linear optimization techniques. The key computation
in this approach is that of the gradient of the validation function with respect to
hyperparameters. We show that for large-scale problems involving a wide choice
of kernel-based models and validation functions, this computation can be very ef-
ficiently done; often within just a fraction of the training time. Empirical results
show that a near-optimal set of hyperparameters can be identified by our approach
with very few training rounds and gradient computations.

.

1 Introduction

Consider the general SVM classifier model in which, given n training examples {(xi, yi)}ni=1, the
primal problem consists of solving the following problem:

min
(w,b)

1

2
‖w‖2 + C

n∑

i=1

l(oi, yi) (1)

where l denotes a loss function over labels yi ∈ {+1,−1} and the outputs oi on the training set. The
machine’s output o for any example x is given as o = w ·φ(x)− b =

∑n
j=1 αjyjk(x, xi)− b where

the αi are the dual variables, b is the threshold parameter and, as usual, computations involving φ
are handled using the kernel function: k(x, z) = φ(x) · φ(z). For example, the Gaussian kernel is
given by

k(x, z) = exp(−γ‖x− z‖2) (2)
The regularization parameter C and kernel parameters such as γ comprise the vector h of hyperpa-
rameters in the model. h is usually chosen by optimizing a validation measure (such as the k-fold
cross validation error) on a grid of values (e.g. a uniform grid in the (logC, log γ) space). Such
a grid search is usually expensive. Particularly, when n is large, this search is so time-consuming
that one usually resorts to either default hyperparameter values or crude search strategies. The prob-
lem becomes more acute when there are more than two hyperparameters. For example, for feature
weighting/selection purposes one may wish to use the following ARD-Gaussian kernel:

k(x, z) = exp(−
∑

t

γt‖xt − zt‖2) (3)

where γt = weight on the tth feature. In such cases, a grid based search is ruled out. In Figure 1 (see
section 5) we show contour plots of performance of an SVM on the logC − log γ plane for a real-
world binary classification problem. These plots show that learning performance behaves “nicely” as

a function of hyperparameters. Intuitively, as C and γ are varied one expects the SVM to smoothly
transition from providing underfitting solutions to overfitting solutions. Given that this phenomenon
seems to occur routinely on real-world learning tasks, a very appealing and principled alternative to
grid search is to consider a differentiable version of the performance validation function and invoke
non-linear gradient-based optimization techniques for adapting hyperparameters. Such an approach
requires the computation of the gradient of the validation function with respect to h.

Chapelle et al. (2002) give a number of possibilities for such an approach. One of their most promis-
ing methods is to use a differentiable version of the leave-one-out (LOO) error. A major disadvan-
tage of this method is that it requires the expensive computation and storage of the inverse of a
kernel sub-matrix corresponding to the support vectors. It is worth noting that, even if, on some
large scale problems, the support vector set is of a manageable size at the optimal hyperparameters,
the corresponding set can be large when the hyperparameter vector is away from the optimal; on
many problems, such a far-off region in the hyperparameter space is usually traversed during the
adaptation process!

We highlight the contributions of this paper.
(1) We consider differentiable versions of validation-set-based objective functions for model selec-
tion (such as k-fold error) and give an efficient method for computing the gradient of this function
with respect to h. Our method does not require the computation of the inverse of a large kernel
sub-matrix. Instead, it only needs a single linear system of equations to be solved, which can be
done either by decomposition or conjugate-gradient techniques. In essence, the cost of computing
the gradient with respect to h is about the same, and usually much lesser than the cost of solving (1)
for a given h.
(2) Our method is applicable to a wide range of validation objective functions and SVM models that
may involve many hyperparameters. For example, a variety of loss functions can be used together
with multiclass classification, regression, structured output or semi-supervised SVM algorithms.
(3) Large-scale empirical results show that with BFGS optimization, just trying about 10-20 hy-
perparameter points leads to the determination of optimal hyperparameters. Moreover, even as
compared to a fine grid search, the gradient procedure provides a more precise placement of hy-
perparameters leading to better generalization performance. The benefit in terms of efficiency over
the grid approach is evident even with just two hyperparameters. We also show the usefulness of our
method for tuning more than two hyperparameters when optimizing validation functions such as the
F measure and weighted error rate. This is particularly useful for imbalanced problems.

This paper is organized as follows: In section 2, we discuss the general class of SVM models to
which our method can be applied. In section 3, we describe our framework and provide the details
of the gradient computation for general validation functions. In section 4, we discuss how to develop
differentiable versions of several common performance validation functions. Empirical results are
presented in section 5. We conclude this paper in section 6. Due to space limitations, several details
have been omitted but can be found in the technical report (Keerthi et al. (2006)).

2 SVM Classification Models

In this section, we discuss the assumptions required for our method to be applicable. Consider SVM
classification models of the form in (1). We assume that the kernel function k is a continuously
differentiable function of h. Three commonly used SVM loss functions are: (1) hinge loss; (2)
squared hinge loss; and (3) squared loss. In each of these cases, the solution of (1) is obtained by
computing the vector α that solves a dual problem. The solution usually leads to a linear system
relating α and b:

P

(
α
b

)
= q (4)

where P and q are, in general, functions of h. We make the following assumption: Locally around
h (at which we are interested in calculating the gradient of the validation function to be defined
soon) P and q are continuously differentiable functions of h. We write down P and q for the hinge
loss function and discuss the validity of the above assumption. Details for other loss functions are
similar.

Hinge loss. l(oi, yi) = max{0, 1 − yioi}. After the solution of (1), the training set indices get
partitioned into three sets: I0 = {i : αi = 0}, Ic = {i : αi = C} and Iu = {i : 0 < αi < C}. Let
α0, αc, αu, yc, yu, ec, eu, Ωuc, Ωuu etc be appropriately defined vectors and matrices. Then (4) is
given by

α0 = 0, αc = Cec,

(
Ωuu −yu
−yTu 0

)(
αu
b

)
=

(
eu − Ωucαc

yTc αc

)
(5)

If the partitions I0, Ic and Iu do not change locally around a given h then assumption 2 holds.
Generically, this happens for almost all h.

The modified Huber loss function can also be used, though the derivation of (4) for it is more
complex than for the three loss functions mentioned above. Recently, weighted hinge loss with
asymmetric margins (Grandvalet et al., 2005) has been explored for treating imbalanced problems.

Weighted Hinge loss. l(oi, yi) = Ci max{0,mi − yioi}. where Ci = C+, mi = m+ if yi = 1
and Ci = C−, mi = m− if yi = −1. Because C+ and C− are present, the hyperparameter C in (1)
can be omitted. The SVM model with weighted hinge loss has four extra hyperparameters, C+, C−,
m+ andm−, apart from the kernel hyperparameters. Our methods in this paper allow the possibility
of efficiently tuning all these parameters together with kernel parameters.

The method described in this paper is not special to classification models only. It extends to a
wide class of kernel methods for which the optimality conditions for minimizing a training objective
function can be expressed as a linear system (4) in a continuously differentiable manner1. These
include many models for multiclass classification, regression, structured output and semi-supervised
learning (see Keerthi et al. (2006)).

3 The gradient of a validation function

Suppose that for the purpose of hyperparameter tuning, we are given a validation scheme involving
a small number of (training set, validation set) partitions, such as: (1) using a single validation set,
(2) k-fold cross validation, or (3) averaging over k randomly chosen (training set, validation set)
partitions. Our method applies to any of these three schemes. To keep notations simple, we explain
the ideas only for scheme (1) and expand on the other schemes towards the end of this section. Note
that throughout the hyperparameter optimization process, the training-validation splits are fixed.

Let {x̃l, ỹl}ñl=1 denote the validation set. Let K̃li = k(x̃l, xi) involving a kernel calculation between
an element of a validation set with an element of the training set. The output on the lth validation
example is õl =

∑
i αiyiK̃li − b which, for convenience, we will rewrite as

õl = ψTl β (6)

where β is a vector containing α and b, and ψl is a vector containing yiK̃li, i = 1, . . . , n and −1 as
the last element (corresponding to b). Let us suppose that the model selection problem is formulated
as a non-linear optimization problem:

h? = argmin
h

f(õ1, . . . , õñ) (7)

where f is a differentiable validation function of the outputs õl which implicitly depend on h. In the
next section, we will outline the construction of such functions for criteria like error rate, F measure
etc. We now discuss the computation of ∇hf . Let θ denote a generic parameter in h and let us
represent partial derivative of some quantity, say v, with respect to θ as v̇. Before writing down
expressions for ḟ , let us discuss how to get β̇. Differentiating (4) with respect to θ gives

P β̇ + Ṗ β = q̇ ⇒ β̇ = P−1(q̇ − Ṗ β) (8)

Now let us write down ḟ .

ḟ =
ñ∑

l=1

(∂f/∂õl) ˙̃ol (9)

1Infact, the main ideas easily extend when the optimality conditions form a non-linear system in (α, b) (e.g.,
in Kernel Logistic Regression).

where ˙̃ol is obtained by differentiating (6):

˙̃ol = ψTl β̇ + ψ̇Tl β (10)

The computation of β̇ in (8) is the most expensive step, mainly because it requires P−1. Note that,
for hinge loss, P−1 can be computed in a somewhat cheaper way: only a matrix of the dimension
of Iu needs to be inverted. Even then, in large scale problems the dimension of the matrix to be
inverted can become so large that even storing it may be a problem; even when large storage is
possible, the inverse can be very expensive. Most times, the effective rank of P is much smaller
than its dimension. Thus, instead of computing P−1 in (8), we can instead solve

P β̇ = (q̇ − Ṗ β) (11)

for β̇ approximately using decomposition methods or iterative methods such as conjugate-gradients.
This can improve efficiency as well as take care of memory issues by storing P only partially and
computing the remaining parts of P as and when needed. Since the right-hand-side vector (q̇− Ṗ β)
in (11) changes for each different θ with respect to which we are differentiating, we need to solve
(11) for each element of h. If the number of elements of h is not small (say, we want to use (3) with
the MNIST dataset which has more than 700 features) then, even with (11), the computations can
still remain very expensive.

We now give a simple trick that shows that if the gradient calculations are re-organized, then ob-
taining the solution of just a single linear system suffices for computing the full gradient of f with
respect to all elements of h. Let us denote the coefficient of ˙̃ol in the expression for ḟ in (9) by δl,
i.e.,

δl = ∂f/∂õl (12)

Using (10) and plugging the expression for β̇ from (8) into (9) gives

ḟ =
∑

l

δl ˙̃ol =
∑

l

δl(ψ
T
l P
−1(q̇ − Ṗ β) + ψ̇Tl β) = dT (q̇ − Ṗ β) + (

∑

l

δlψ̇l)
Tβ (13)

where d is the solution of
PT d = (

∑

l

δlψl) (14)

The beauty of the reorganization in (13) is that d is the same for all variables θ in h about which the
differentiation is being done. Thus (14) needs to be solved only once. In concurrent work (Seeger,
2006) has used a similar idea for kernel logistic regression.

As a word of caution, note that P may not be symmetric. See, e.g., the P arising from (5) for
the hinge loss case. Also, the parts corresponding to zero components should be omitted from
calculations and the special structure of P should be utilized,e.g., for hinge loss when computing
Ṗ β the parts of Ṗ corresponding to α0 (see (5)) can be ignored. The linear system in the above
equation can be efficiently solved using conjugate gradient techniques.

The sequence of steps for the computation of the full gradient of f with respect to h is as follows.
First compute δl from (12). For various choices of validation function, we outline this computation
in the next section. Then solve (14) for d. Then, for each θ use (13) to get all the derivatives of
f . The computation of Ṗ β has to be performed for each hyperparameter separately. In problems
with many hyperparameters, this is the most expensive part of the gradient computation. Note that
in some cases, e.g., θ = C, Ṗ β is immediately obtained. For θ = γ or γt, when using (2,3), one
can cache pairwise distance computations while computing the kernel matrix. We have found (see
section 5) that the cost of computing the gradient of f with respect to h to be usually much less than
the cost of solving (1) and then obtaining f .

We can also employ the above ideas in a validation scheme where one uses k training-validation
splits (e.g in k-fold cross-validation). In this case, for each partition one obtains the linear system
(4), corresponding validation outputs (6) and the linear system in (14). The gradient is simply
computed by summing over the k partitions, i.e., ḟ =

∑k
j=1 ḟ

(k) where ḟ (k) is given by (13) using
the quantities P, q, d etc associated with the kth partition.

The model selection problem (7) may now be solved using, e.g., Quasi-Newton methods such as
BFGS which only require function value and gradient at a hyperparameter setting. In particular,

reaching the minimizer of f too closely is not important. In our implementations we terminate
optimization iterations when the following loose termination criterion is met: |f(hk+1)− f(hk)| ≤
10−3|f(hk)|, where hk+1 and hk are consecutive iterates in the optimization process.

A general concern with descent methods is the presence of local minima. In section 5, we make
some encouraging empirical observations in this regard, e.g., local minima problems did not occur
for the C, γ tuning task; for several other tasks, starting points that work surprisingly well could be
easily obtained.

4 Smooth validation functions

We consider validation functions that are general functions of the confusion matrix, of the form
f(tp, fp) where tp is the number of true positives and fp is the number of false positives. Let u(z)
denote the unit step function which is 0 when z < 0 and 1 otherwise. Denote ũl = u(ỹlõl), which
evaluates to 1 if the lth example is correctly classified and 0 otherwise. Then, tp and fp can be
written as tp =

∑
l:ỹl=+1 ũl, fp =

∑
l:ỹl=−1(1− ũl). Let ñ+ and ñ− be the number of validation

examples in the positive and negative classes. The most commonly used validation function is error
rate.

Error rate (er) is simply the percentage of incorrect predictions, i.e., er = (ñ+ − tp+ fp)/ñ.

For classification problems with imbalanced classes it is usual to consider either weighted error rate
or a function of precision and recall such as the F measure.

Weighted Error rate (wer) is given by wer = (ñ+ − tp+ ηfp)/(ñ+ + ηñ−), where η is the ratio
of the cost of misclassifications of the negative class to that of the positive class.

F measure (F) is the harmonic mean of precision and recall: F = 2tp/(ñ+ + tp+ fp)

Alternatively, one may want to maximize precision under a recall constraint, or maximize the area
under the ROC Curve or maximize the precision-recall breakeven point. See Keerthi et al. (2006)
for a discussion on how to treat these cases.

It is common practice to evaluate measures like precision, recall and F measure while varying the
threshold on the real-valued classifier output, i.e., at any given threshold σ0, tp and fp can be
redefined in terms of the following,

ũl = u (ỹl(õl − σ0)) (15)

For imbalanced problems one may wish to maximize a score such as the F measure over all values
of σ0. In such cases, it is appropriate to incorporate σ0 as an additional hyperparameter that needs
to be tuned. Such bias-shifting is particularly also useful as a compensation mechanism for the
mismatch between training objective function and validation function; often one uses an SVM as
the underlying classifier even though it is not explicitly trained to minimize the validation function
that the practitioner truly cares about. In section 5, we make some empirical observations related to
this point.

The validation functions discussed above are based on discrete counts. In order to use gradient-based
methods smooth functions of h are needed. To develop smooth versions of validation functions, we
define s̃l, which is a sigmoidal approximation to ũl (15) of the following form:

s̃l = 1/[1 + exp (−σ1ỹl (õl − σ0))] (16)

where σ1 > 0 is a sigmoidal scale factor. In general, σ0, σ1 may be functions of the validation out-
puts. (As discussed above, one may alternatively wish to treat σ0 as an additional hyperparameter.)
The scale factor σ1 influences how closely s̃l approximates the step function ũl and hence controls
the degree of smoothness in building the sigmoidal approximation. As the hyperparameter space
is probed, the magnitude of the outputs can vary quite a bit. σ1 takes the scale of the outputs into
account. Below we discuss various methods to set σ0, σ1.

We build a differentiable version of such a function by simply replacing ũl by s̃l. Thus, we have
f = f(s̃1 . . . s̃ñ). The value of δl (12) is given by:

δl =
∂f

∂s̃l

∂s̃l
∂õl

+

(∑

r

∂f

∂s̃r

∂s̃r
∂σ0

)
∂σ0

∂õl
+

(∑

r

∂f

∂s̃r

∂s̃r
∂σ1

)
∂σ1

∂õl
(17)

−2 0 2
0

2

4

6
Smooth Val Error Rate (er)

Log gamma
Lo

g
C

−2 0 2
0

2

4

6
Test Error Rate

Log gamma

Lo
g

C

Figure 1: Performance contours for IJCNN with 2000 training points. The sequence of points gen-
erated by Grad are shown by � (best is in red). The point chosen by Grid is shown by ◦ in red.

where the partial derivatives of s̃l with respect to õl, σ0, σ1 can be easily derived from (16) and
(∂f/∂s̃l) = (∂f/∂tp)(∂tp/∂s̃l) + (∂f/∂fp)(∂fp/∂s̃l).

We now discuss three methods to compute the sigmoidal parameters σ0, σ1. For each of these
methods the partial derivatives of σ0, σ1 with respect to õl can be obtained (Keerthi et al. (2006))
and used for computing (17).

Direct Method. Here, we simply set, σ0 = 0, σ1 = t/ρ, where ρ denotes standard deviation
of the outputs {õl} and t is a constant which is heuristically set to some fixed value in order to
well-approximate the step function. In our implementation we use t = 10.

Hyperparameter Bias Method. Here, we treat σ0 as a hyperparameter and set σ1 as above.

Minimization Method. In this method, we obtain σ0, σ1 by performing sigmoidal fitting based
on unconstrained minimization of some smooth criterion N , i.e., (σ0, σ1) = argminR2 N . A
natural choice of N is based on Platt’s method (Platt (1999)) where s̃l is interpreted as the posterior
probability that the class of lth validation example is ỹl, and we take N to be the Negative-Log-
Likelihood: N = Nnll = −∑l log(s̃l). Sigmoidal fitting based on Nnll has also been previously
proposed in Chapelle et al. (2002). The probabilistic error rate: per =

∑
l(1− s̃l)/ñ and f = Nnll

are suitable validation functions which go well with the choice N = Nnll.

5 Empirical Results

We demonstrate the effectiveness of our method on several binary classification problems. The SVM
model with hinge loss was used. SVM training was done using the SMO algorithm. Five fold cross
validation was used to form the validation functions. Four datasets were used: Adult, IJCNN, Vehicle
and Splice. The first three were taken from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
and Splice was taken from http://ida.first.fraunhofer.de/˜raetsch/. The number of examples/features
in these datasets are: Adult: 32561/123; IJCNN: 141691/22; Vehicle: 98528/100; and Splice:
3175/60. For each dataset, training sets of different sizes were chosen in a class-wise stratified
fashion; the remaining examples formed the test set.

The Gaussian kernel (2) and the ARD-Gaussian kernel (3) were used. For (C, γ) tuning with the
Gaussian Kernel, we also tried the popular Grid over a 15× 15 grid of values. For C, γ tuning with
the gradient method, the starting point C = γ = 1 was used.

Comparison of validation functions. Figure 1 shows the contours of the smoothed validation
error rate and the actual test error rate for the IJCNN dataset with 2000 training examples on the
(logC, log γ) plane. Grid and Grad respectively denote the grid and the gradient methods applied
to the (C, γ) tuning task. We used f = er smoothed with the direct method for Grad. It can be seen
that the contours are quite similar. We also generated corresponding contours (omitted) for f = per
and f = Nnll (see end of section 4) and found that the validation er with the direct method better
represents the test error rate. Figure 1 also shows that the gradient method very quickly plunges into
the high-performance region in the (C, γ) space.

Comparison of Grid and Grad methods. For various training set sizes of IJCNN, in Table 1, we
compare the speed and generalization performance of Grid and Grad, Clearly Grad is much more

efficient than Grid. The good speed improvement is seen even at small training set sizes. Although
the efficiency of Grid can be improved in certain ways (say, by performing a crude search followed
by a refined search, by avoiding unnecessary exploration of difficult regions in the hyperparame-
ter space etc) Grad determines the optimal hyperparameters more precisely. Table 2 compares
Grid and Grad on Adult and Vehicle datasets for various training sizes. Though the generalization
performance of the two methods are close, Grid is much slower.

Table 1: Comparison of Grid, Grad & Grad-ARD on IJCNN & Splice. nf= number of hyperparam-
eter vectors tried. (For Grid, nf= 225.) cpu= cpu time in minutes. erate=% test error rate.

Grid Grad Grad-ARD
ntrg cpu erate nf cpu erate nf cpu erate

IJCNN
2000 10.03 2.95 11 4.58 2.87 28 5.63 2.65
4000 38.77 2.42 12 11.40 2.42 13 8.40 2.14
8000 218.92 1.76 14 68.58 1.77 17 38.58 1.50

16000 1130.37 1.24 12 127.03 1.26 20 154.03 1.08
32000 5331.15 0.91 9 382.20 0.91 7 269.16 0.82

Splice
2000 11.42 9.19 13 7.57 8.17 37 35.04 3.49

Table 2: Comparison of Grad & Grid methods on Adult & Vehicle. Definitions of nf, cpu & erate
are as in Table 1. For Vehicle and ntrg=16000, Grid was discontinued after 5 days of computation.

Adult Vehicle
Grad Grid Grad Grid

ntrg nf cpu erate cpu erate nf cpu erate cpu erate
2000 9 3.62 16.21 8.66 16.14 7 2.50 13.58 15.25 13.84
4000 16 15.98 15.64 37.53 15.95 5 8.60 13.29 135.28 13.30
8000 10 52.17 15.69 306.25 15.59 9 83.10 12.84 1458.12 12.82

16000 6 256.40 15.40 3667.90 15.37 6 360.88 12.58 – –

Feature Weighting Experiments. To study the effectiveness of our gradient-based approach when
many hyperparameters are present, we use the ARD-Gaussian kernel in (3) and tune C together
with all the γt’s. As before, we used f = er smoothed with the direct method. The solution for
Gaussian kernel was seeded as the starting point for the optimization. Results are reported in Table
1 as Grad-ARD where cpu denotes the extra time for this optimization. We see that Grad-ARD
achieves significant improvements in generalization performance over Grad without increasing the
computational cost by much even though a large number of hyperparameters are being tuned.

Maximizing F-measure by threshold adjustment. In section 4 we mentioned about the possi-
ble value of threshold adjustment when the validation/test function of interest is a quantity that is
different from error rate. We now illustrate this by taking the Adult dataset, with F measure. The
size of the training set is 2000. Gaussian kernel (2) was used. We implemented two methods: (1)
we set σ0 = 0 and tuned only C and γ; (2) we tuned the three hyperparameters C, γ and σ0. We
ran the methods on ten different random training set/test set splits. Without σ0, the mean (standard
deviation) of F measure values on 5-fold cross validation and on the test set were: 0.6385 (0.0062)
and 0.6363 (0.0081). With σ0, the corresponding values improved: 0.6635 (0.0095) and 0.6641
(0.0044). Clearly, the use of σ0 yields a very significant improvement on the F-measure. The ability
to easily include the threshold as an extra hyperparameter is a very useful advantage for our method.

Optimizing weighted error rate in imbalanced problems. In imbalanced problems where the
proportion of examples in the positive class is small, one usually minimizes weighted error rate
wer (see section 4) with a small value of η. One can think of four possible methods in which,
apart from the kernel parameter γ and threshold σ0 (we used the Hyperparameter bias method for
smoothening), we include other parameters by considering sub-cases of the weighted hinge loss
model (see section 2) – (1) Usual SVM: Set m+ = m− = 1, C+ = C, C− = C and tune C. (2)
Set m+ = m− = 1, C+ = C, C− = ηC and tune C. (3) Set m+ = m− = 1 and tune C+ and
C− treating them as independent parameters. (4) Use the full Weighted Hinge loss model and tune

C+, C−, m+ and m−. To compare the performance of these methods we took the IJCNN dataset,
randomly choosing 2000 training examples and keeping the remaining examples as the test set. Ten
such random splits were tried. We take η = 0.01. The top half of Table 3 reports weighted error
rates associated with validation and test. The weighted hinge loss model performs best.

Table 3: Mean (standard deviation) of weighted (η = 0.01) error rate values on the IJCNN dataset.

C+ = C, C− = C C+ = C, C− = ηC C+, C− tuned Full Weighted Hinge
With σ0

Validation 0.0571 (0.0183) 0.0419 (0.0060) 0.0490 (0.0104) 0.0357 (0.0063)
Test 0.0638 (0.0160) 0.0549 (0.0098) 0.0571 (0.0136) 0.0461 (0.0078)

Without σ0

Validation 0.1953 (0.0557) 0.1051 (0.0164) 0.1008 (0.0607) 0.0364 (0.0061)
Test 0.1861 (0.0540) 0.0897 (0.0154) 0.0969 (0.0502) 0.0469 (0.0076)

The presence of the threshold parameter σ0 is important for the first three methods. The bottom half
of Table 3 gives the performance statistics of the methods when threshold is not tuned. Interestingly,
for the weighted hinge loss method, tuning of threshold has little effect. Grandvalet et al. (2005)
also make the observation that this method appropriately sets the threshold on its own.

Cost Break-up. In the gradient-based solution process, each step of the optimization requires the
evaluation of f and ∇hf . In doing this, there are three steps that take up the bulk of the computa-
tional cost: (1) training using the SMO algorithm; (2) the solution of the linear system in (14); and
(3) the remaining computations associated with the gradient, of which the computation of Ṗ β in (13)
is the major part. We studied the relative break-up of the costs for the IJCNN dataset (training set
sizes ranging from 2000 to 32000), for solution by Grad and Grad-ARD methods. On an average,
the cost of solution by SMO forms 85 to 95% of the total computational time. Thus, the gradient
computation is very cheap. We also found that the Ṗ β cost of Grad-ARD doesn’t become large in
spite of the fact that 23 hyperparameters are tuned there. This is mainly due to the efficient reusage
of terms in the ARD-Gaussian calculations that we mentioned in section 4.

6 Conclusion

The main contribution of this paper is a fast method of computing the gradient of a validation func-
tion with respect to hyperparameters for a range of SVM models; together with a nonlinear optimiza-
tion technique it can be used to efficiently determine the optimal values of many hyperparameters.
Even in models with just two hyperparameters our approach is faster and offers a more precise hy-
perparameter placement than the Grid approach. Our approach is particularly of great value for
large scale problems. The ability to tune many hyperparameters easily should be used with care.
On a text classification problem involving many thousands of features we placed an independent
feature weight for each feature and optimized all these weights (together with C) only to find severe
overfitting taking place. So, for a given problem it is important to choose the set of hyperparameters
carefully, in accordance with the richness of the training set.

References
S. S. Keerthi, V. Sindhwani and O. Chapelle. An efficient method for gradient-based adaptation of

hyperparameters in SVM models. Technical Report, 2006.
O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee. Choosing multiple parameters for support

vector machines. Machine Learning, 46:131–159, 2002.
Y. Grandvalet, J. Mariéthoz and S. Bengio. A probabilistic interpretation of SVMs with an applica-

tion to unbalanced classification. NIPS, 2005.
J. Platt. Probabilities for support vector machines. In Advances in Large Margin Classifiers. MIT

Press, Cambridge, Massachusetts, 1999.
M. Seeger. Cross validation optimization for structured Hessian kernel methods. Tech. Report, MPI

for Biological Cybernetics, Tübingen, Germany, May 2006.

