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I
n semisupervised learning (SSL), 
we learn a predictive model from a 
collection of labeled data and a 
typically much larger collection of 
unlabeled data. These lecture 

notes present a framework called mul-
tiview point cloud regularization 
(MVPCR) [5], which unifies and gen-
eralizes several semisupervised kernel 
methods that are based on data-de-
pendent regularization in reproducing 
kernel Hilbert spaces (RKHSs). Special 
cases of MVPCR include coregularized 
least squares (CoRLS) [7], [3], [6], 
manifold regularization (MR) [1], [8], 
[4], and graph-based SSL. An accom-
panying theorem shows how to reduce 
any MVPCR problem to standard 
supervised learning with a new multi-
view kernel. 

RELEVANCE
RKHS techniques form the basis of 
many state-of-the-art supervised learn-
ing algorithms, such as support vector 
machines (SVMs), kernel ridge regres-
sion, and Gaussian processes. By plug-
ging the new multiview kernel into 
these or any other standard kernel 
method, we can conveniently convert 
them to SSL algorithms. Via the reduc-
tion of MVPCR to supervised RKHS 
learning, we can easily derive general-
ization error bounds using standard 
results. In particular, we generalize the 
bound given in [6] for CoRLS. From an 
experimental perspective, there are 
many interesting algorithms that fit 
into the MVPCR framework that have 
yet to be explored. As one example, we 
present manifold coregularization, 
which directly combines the ideas in 
CoRLS and MR. 

PROBLEM SETTING
We begin with some learning theory. 
For any input x from an input space X, 
we suppose there is s ome target y [ R 
that we would like to predict. The “loss” 
incurred when we predict ŷ rather than 
y is given by a nonnegative loss func-
tion V 1 ŷ, y 2 . Our goal is to find a pre-
diction function whose average loss, or 
risk, is small. More formally, we assume 
that 1x, y 2  pairs are drawn from a dis-
tribution PX3Y, and the risk of f  is 
defined as the expected loss on a ran-
dom pair: R 1 f 2 5 EV 1 f 1X 2 , Y 2 . Although 
we would like to minimize R 1 f 2 , in 
practice we cannot even compute it 
since PX3Y is unknown. Instead, sup-
pose we have a training set of pairs 1x1, y1 2 , c, 1x,, y, 2  sampled indepen-
dently from PX3Y. Then we can minimize 
the empir ical risk, which is defined as 
R̂, 1 f 2 5 11/, 2a,

i51
V 1 f 1xi 2 , yi 2 . By the 

law of large numbers, lim,S` R̂, 1 f 2  5 
R 1 f 2  with probability one, so this is 
a plausible substitute. However, the 
minimizer of R̂, 1 f 2  is not guaranteed 
to converge to the minimizer of 
R 1 f 2  without additional  constraints on 
the set of functions over which we are 
minimizing. Thus we constrain our min-
imization to some class of functions 
F  and define the empirical risk 
 minimizer and risk minimizer, respec-
tively, by f̂,5 arg minf[F R̂, 1 f 2  and 
f*5 arg minf[F R 1 f 2 . For many F, 
we will have R 1 f̂, 2 S R 1 f* 2 .  With a 
finite training set, however, there is an 
inevitable gap between the risk of f̂, and 
the risk of f*. This gap is called estima-
tion error, since f̂, is only an “estimate” 
of the unknown function f*. The speed 
with which the estimation error con-
verges to zero is governed, in part, by 
the size of the class F, with smaller 
classes giving faster convergence. As the 

ultimate performance benchmark, we 
consider the Bayes prediction func-
t ion, defined as y*5 arg minf R 1 f 2 , 
which minimizes the risk over all func-
tions. The difference in risk between 
y* (the best overall) and f* (the best 
in F) is called the approximation 
error. We can decompose the excess 
risk that f̂, has over y* using these 
two types of error: 

 R 1 f̂, 2 2 R 1y* 2 5 R 1 f̂, 2 2 R 1 f* 2
 1 R 1 f* 2 2 R 1y* 2 . 

In practice, a convenient way to adjust 
the balance between approximation and 
estimation error is to use Tikhonov 
 regularization, in which we solve 
f*5 arg minf[F R̂, 1 f 21gV 1 f 2 , for some 
g . 0 and some nonnegative penalty 
function V. As g increases, f* is pulled 
towards a minimizer of V 1 f 2 , which 
effectively limits the domain of optimiza-
tion. Generally speaking, increasing g 
will increase approximation error and 
decrease estimation error. Many popular 
learning algorithms, including the SVM 
and kernel ridge regression, are Tikhonov 
regularization problems for which F is 
an RKHS. An RKHS of functions from 
X to R is a Hilbert space H with a repro-
ducing kernel, i.e., a function k :X  3 
X S R for which the following proper-
ties hold: a) k 1x, # 2 [ H for all x [ X, 
and b) 8f, k 1x, # 2 9H5 f 1x 2 , for all x [ X 
and f [ H. The most basic RKHS regu-
larization problem is 

 f̂,5 arg min
fPH

 3R̂, 1 f 2 1g||f  ||H
2 4 . (1) 

B y  t h e  r e p r e s e n t e r  t h e o r e m , 
f̂, 1x 2 5 a

,

i51
ai k 1x, xi 2  f o r  s o m e 

a5 1ai 2 i51
, , and thus (1) reduces to a 

finite-dimensional optimization over a. 

approximation error

estimation errorfe
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For the square loss, the optimal a is a 
solution to 1K1gI 2a5 y, where K  
is the kernel matrix defined by 
Kij5 k 1xi, xj 2 , I  is the identity matrix, 
and y is the vector of training labels. We 
now discuss extensions of Tikhonov 
Regularization that are based on semi-
supervised learning assumptions. 

MANIFOLD SMOOTHNESS 
AND CLUSTER ASSUMPTIONS
The input space X  often has a natural 
distance metric, such as the Euclidean 
distance when X5Rd. However, the 
input points themselves often suggest a 
different metric. For instance, suppose 
the input points lie on a one-dimensional 
manifold, as shown in Figure 1(a). While 
the points A and C are close in Euclidean 
distance, they are far apart along the 
manifold. In Figure 1(b), the manifold 
has two disjoint components, and while 
points on different components may be 
close in Euclidean distance, they are infi-
nitely far apart along the manifold. The 
idea that the input distribution PX may 
live on a low-dimensional manifold in X 
is supported by many real-world prob-
lems. For example, in speech production, 
the articulatory organs can be modeled 
as a collection of tubes whose lengths 
and widths smoothly parameterize the 
low-dimensional manifold of speech sig-
nals. In vision, the images we get when 
viewing an object from different posi-
tions in R3 form a three-dimensional 
manifold in image space. The manifold 
smoothness assumption in SSL is that f* 
is “smooth” with respect to the manifold 
underlying PX. Although we don’t gener-
ally know PX, in SSL we have a “point 
cloud” x1, c, xn sampled from PX. The 
intrinsic neighborhood structure of the 
manifold is approximated by the nearest 
neighbor graph on the point cloud. Let 
W  be the adjacency matrix and define 
VI 1 f 25 11/2 2 a i, j

 Wij 1 f 1xi 2 2 f 1xj 2 2 2. 
We can write this intrinsic smoothness 
 measure as a quadratic form with the 
Laplacian matrix L of the graph, i.e., 
VI 1 f 2 5 f TLf,  w h e r e  f5 1 f 1x1 2 c
f 1xn 2 2T and L5D2W, where D is the 
diagonal degree matrix Dii5 a j

Wij. We 
attain the MR algorithm by adding VI 1 f 2  
to the objective function of (1): 

f̂,5 arg min
fPH

R̂, 1 f 21g|| f ||H
2 1gIVI 1 f 2 .

 (2) 

As we make gI large, we push f̂, towards 
the region of H with small VI 1 f 2 , i.e., 
towards those functions with high intrin-
sic smoothness. As we restrict f̂, to a 
subset of H, we reduce the estimation 
error. If our manifold smoothness 
assumption is correct, then VI 1 f* 2  
should also be small, and the restriction 
will not increase approximation error. 

MULTIVIEW ASSUMPTIONS
In the multiview approach to SSL, we 
have several classes of prediction func-
tions, or “views.” This terminology arises 
in contexts where an input x [ X 
can be decomposed naturally as 
x5 1x1, c, xm 2 , where each xi repre-
sents a different view of the input x. With 
this decomposition of the input vector, we 
can define m views, where the ith view is 
a class of functions depending only on xi 
and ignoring the other components of x. 
For example, suppose an input x is a clip 
from a video of a conference room. We 
divide x into an audio stream and a video 
stream, which we write as x5 1xaud, xvid 2 .
Define our first view, F 

aud, to consist of 
prediction functions of the form 
xA f 1xaud 2 , and our second view, F 

vid, to 
consist of functions of the form xAf 1xvid2 . 
Suppose the goal is to identify who is 
speaking in each video clip. Although it is 

certainly easier to identify who is speaking 
by using the xaud and xvid signals together, 
a person who is familiar with the voices 
and appearances of the individuals in the 
conference room could do quite well with 
just one of these signals. Thus it is reason-
able to assume that each of our views, 
both F 

aud and F 
vid, contains a function 

that makes the correct predictions. Now 
suppose we have a very limited amount of 
training data, and the only time that Bob 
spoke, there was an accompanying sound 
of a truck passing outside in the audio 
stream xaud but no corresponding signal 
in the video track xvid. Without additional 
information, it would be difficult to rule 
out a prediction function f bad

aud [ F 
aud 

that identifies Bob as the speaker whenev-
er a truck passes. However, there is no 
evidence for a truck passing in the video 
signal, and thus there is no function in 
F 

vid that can consistently make the same 
predictions as f bad

aud. Since we assumed 
that each view contains a function that 
makes the correct predictions, and F 

vid 
does not contain any function that 
matches f bad

aud , we can conclude that f bad
aud 

does not make the correct predictions. 
Thus by using the assumption that each 
view has a good function, we can prune 
out functions, such as f bad

aud, that fit the 
training data but will not perform well in 
general. To effect this pruning in practice, 
we introduce a coregularization function 
VC 1 f 

1, f  
2 2  that measures the disagree-

ment between f 1 and f 2. Then, we solve 

1 f̂,1, f̂,2 25 arg min
f 1PH1, f 2PH2 

R̂,a1
2
1 f 11 f 2 2b

 

 1g1||f 
1||H1

2 1g2||f  
2||H2

2

 1lVC 1 f 
1, f  

2 2 ,  (3)

for RKHSs H1 and H2. The final pre-
diction function is f̂, 1x 2 5 1 f̂,

1 1x 2  1

f̂,
2 1x 2 2 /2.  Taking VC 1 f 

1, f  
2 2 5 a

n

i511 f 
1 1xi 2 2 f  

2 1xi 2 2 2, we get the CoRLS [7], 
[3], [6] algorithm. 

SOLUTION

MULTIVIEW POINT 
CLOUD REGULARIZATION
We now consider a generalized Tikhonov 
regularization framework that subsumes 
the methods discussed above. Our views 

A B

C

(a)

(b)

[FIG1] (a) One connected component and 
(b) two connected components.
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are RKHSs H1, c, Hm of real-valued 
funct ions  on  X,  w i th  kerne l s 
k1, c, km,  r e spec t i ve l y.  De f ine 
F5H13c3Hm. We want to select 
one function from each view, say 
f5 1 f 1, c, f m 2 [F, and to combine 
these functions into a single predic-
tion function. We fix a vector of view 
weights a5 1a1, c, am 2 [ Rm,  and 
def ine u 1f 25a1f

11c1amf m.  The 
final prediction function is f 1x 2  5
u 1 f 2 1x25a1f

1 1x21c1amf m 1x2 .  We 
define the space of these prediction func-
tions by H| 5 u 1F 2 . Note that H|  may 
change with different settings of a, in 
particular when entries of a are set to 
zero. For any f [ F, we denote the col-
umn vector of function evaluations 
on the point cloud by f5 1 f 11x12 ,c,
f 11xn2 ,c, f m 1x12 ,c, f m 1xn2 2T [ Rmn. 
(For the rest of this article, we use bold 
face to indicate a finite dimensional col-
umn vector and an underline to indicate 
that a vector is the concatenation of a 
column vector associated with each of 
the m views.) For any positive semidefi-
nite (PSD) matrix M [ Rmn3mn, the 
objective function for MVPCR is 

 arg min
fPH

~ min51f 1,c, f m2:a1f
11camf m5f6R

^
, 1f 2

  1 a
m

i51
gi||f

i||Hi
2 1l f TM f,  (4) 

where g1, c, gm . 0 are RKHS norm 
regularization parameters, and l $ 0 is 
the point cloud norm regularization 
parameter. In the objective function 
above, H|  is a raw set of functions, with-
out any additional structure. The main 
result of this article endows H|  with an 
RKHS structure. 

THEOREM 1
There exists an inner product for which 
H|  is an RKHS with norm 

||f|| ~
H5

 Å min5f : u1f 25f6 ca
m

i51
gi||f

i||Hi
2 1l f TM fd

 

(5) 

and reproducing kernel function 

k| 1z, x 2 5 a
m

j51

aj
2

gj
 kj 1z, x 2 2lkx

T AG21 

 3 1I1lMG21K 221MG21Akz, 

 (6)

where we denote the point cloud kernel 
matrix for the jth view by K j5 1kj 1xi, 
xk 2 2 i, k51

n , K is defined as the block 
 diagonal matrix K5 diag 1K1, c, K m 2  
[ Rmn3mn,

A5 diagaa1, c, a1, c, am, c, amb
G5diag ag1,c, g1,c, gm,c, gmb, 
 

and we denote the column vector of ker-
nel evaluations between the point cloud 
and an arbitrary point x [ X,  for 
each kernel, by kx5 1k1 1x1, x 2 , c, 
k1 1xn, x 2 , c, km 1x1, x 2 , c, km 1xn, x 2 2T. 

For a proof, we point the reader to 
[5], where this theorem was first pre-
sented. We call the kernel given in (6) 
the multiview kernel. This theorem 
implies that the solution to the MVPCR 
problem in (4) is exactly the solution 
to the standard RKHS regularization 
problem of (1) over RKHS H| . We use 
this reduction below to derive com-
plexity and generalization bounds for 
MVPCR as a consequence of well-
known results for RKHS learning. This 
approach is much simpler than the 
“bare-hands” proof used for the special 
case of CoRLS in [6]. From an algorith-
mic perspective, since we have an explicit 
form for the multiview kernel, we can 
easily plug it in to any standard kernel 
algorithm. For example, the kernel can 
be plugged into kernel logistic regres-
sion, Bayesian kernel methods such as 
Gaussian processes, one-class SVMs, ker-
nel PCA, etc., turning these algorithms 
into multiview learners. We note that 
Theorem 1 generalizes the result of [8] 
for MR and of [9] for CoRLS. 

SUPERVISED LEARNING, MR, COMR, 
AND OTHER SPECIAL CASES
It is easy to see that if we consider a sin-
gle view, i.e., m5 a15 1, and set l5 0, 
we get back the basic RKHS regulariza-
tion problem of (1). If we take l . 0 and 
M to be the graph Laplacian, then we get 
back MR. To get CoRLS, we take m5 2, 
a15 a25 1/2, and set M to the matrix

 MC J a I 2 I
2 I I

b ,  

where each I  is an n3 n  identity 
matrix. We can easily extend coregular-
ization to m views by taking MC to be 
an m3m  block matrix with n3 n 
identity matrices on the diagonal, and 
n3 n negative identity matrices off the 
diagonal. In particular, this recovers 
the multiview generalization of coregu-
larization with the least squares loss 
given in [3]. In [10], a kernel matrix is 
derived for coregularized Gaussian pro-
cesses. Their approach is transductive 
and does not provide predictions for 
points outside of the unlabeled training 
set. The multiview kernel presented 
here (for M5MC) not only recovers 
their kernel matrix when evaluated on 
the point cloud but also possesses a 
natural out-of-sample extension to 
unseen data points. In addition, it gen-
eralizes to other loss functions, gives 
explicit control over view weights and 
can incorporate more general data- 
dependent regularizers than the typical 
,2-disagreement. 

RADEMACHER COMPLEXITY 
AND GENERALIZATION BOUNDS
In the section “Problem Setting,” we dis-
cussed how we can trade off between 
approximation error and estimation error 
by changing the size of F. We now dis-
cuss a precise measure of function class 
size. For a class of functions F and a 
 distribution on the domain X, the empir-
ical Rademacher complexity of F for 
a sample x1, c, x, [ X is defined as 
R̂, 1F 2 5 E sup f[F 11/, 2a,

i51
 si f 1xi 2 , 

where the expectation is over the 
i.i.d. Rademacher variables s1, c, s,, 
which are distributed as P 1si5 1 2  5 
P 1si521 2 5 1/2. For fixed sis, the 
supremum selects the function f [ F 
that best “fits” the sis, in the sense that 
when si5 1, f 1xi 2  is a large positive 
number, and when si521, f 1xi 2  is a 
large negative number. Thus if R̂, 1F 2  
is large, then F has functions that can 
fit most random noise sequences and 
may be prone to over-fitting the data. 
We make this statement precise with a 
well-known generalization bound [2], 
which bounds the worst case gap 
between risk and empirical risk in 
terms of R̂, 1F 2 .

e e

n timesn timese e

n timesn times
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THEOREM 2
Suppose that the loss function V 1 #, y 2  is 
L-Lipschitz for every y [ R  and 
V 1 #, # 2 [ 3a, b 4  for some a , b. Then 
for any d [ 10, 1 2 , with probability at 
least 12d, supf [  F 0 R̂, 1 f 2 2 R 1 f 2 0
#2LR̂, 1F 2 1 1b2 a 2  "2log 13/d 2 /,

We now derive bounds for MVPCR. It 
is straightforward to show that if ŵ, is an 
MVPCR solution, then ||ŵ,||~

H

2 # r2 J
R̂, 10 2 ,  where the zero denotes the pre-
diction function that always predicts 
zero. Thus we can consider the optimiza-
tion in MVPCR to be over the norm ball 
H| r of radius r, rather than over all of H| . 
By a well-known result, R̂, 1H| r 2 # r/,  "tr K|, where K| is the kernel matrix for 
k| on the labeled training points (see [5] 
and references therein). To apply 
Theorem 2, H| r must be a fixed class of 
functions. However, in our setting H| r 
may be a random class of functions, even 
depending on the labeled data via the 
point cloud. Let us assume that the point 
cloud defining H|  is independent of the 
labeled data points. Then conditional on 
the point cloud, H| r is a deterministic 
class of functions. Plugging the bound 
on R̂, 1H| r 2  into Theorem 2, we attain a 
generalization bound for any MVPCR 
algorithm. This also implies a bound on 
estimation error, since R 1 f̂,2 2 R 1 f* 2
# 2supf[F |R̂, 1 f 2 2 R 1 f 2 |,  wh ich  i s 

bounded by Theorem 2. 

UNLABELED DATA 
IMPROVES THE BOUND
Here we present a result that shows how 
unlabeled data reduces the Rademacher 
complexity, and thus reduces the bound 
on estimation error, for the specific case 
of two-view CoRLS. Recall that the param-
eter l controls the extent to which we 
enforce agreement between the prediction 
functions from each view: f 1 and f 2. Let 
H| 1l 2  denote the space of prediction func-
tions for a particular value of l. It 
has been shown in [9] and [6] that 
the Rademacher complexity for a 
ball of radius r in H| 1l 2  decreases 
with l  by an amount determined 
by D 1l 25a,

i51
r2  1g1

21kUxi

1 , g2
21kUxi

2 2 , 
where kUxi

1  and  kUxi

2  are u 3 1 column 
vectors whose jth entries are k1 1xi, x,1j 2  
and k2 1xi, x,1j 2 , respectively, and r 1 #, # 2  is 

a metric on the space Ru defined by 
r2 1s, t 25l 1s2 t 2 r 1I 1l S 221  1s2 t 2 ,
where S5g1

21KUU
1  1g2

21KUU
2  is a weight-

ed sum of the unlabeled data kernel 
matrices. We see that the complexity 
reduction D 1l 2  grows with the r-distance 
between the two different (scaled) repre-
sentations of the labeled points, where the 
measure of distance is determined by the 
unlabeled data. 

MANIFOLD COREGULARIZATION
As an application of MVPCR, we present 
manifold coregularization (CoMR), a 
multiview version of MR. Roughly speak-
ing, CoMR is two-view CoRLS with a 
particular choice of views. The ambient 
view, denoted by HA, is an RKHS of 
functions defined on the input space X. 
As usual, the “smoothness” of a function 
f [ HA is measured by the RKHS norm 
||f ||HA. The intrinsic view, denoted by 
HI, comprises functions whose domain 
is restricted to the point cloud 
M5 5x1, c, xn6.  The measure of 
smoothness for a function f [ HI is 
taken to be VI 1 f 2 5 f TMI f, where 
MI  is a PSD matrix, such as the 
Laplacian matrix of the data adjacency 
graph. While in MR we look for a single 
function f [ H that has both small 
RKHS norm and small VI 1 f 2 , in CoMR 
we look for two separate functions, an 
f I [ HI  with small VI 1 f 2  and an 
fA [ HA with small norm. We then ask 
only that fA and f I be close, as measured 
by a coregularization term. Due to the 
difference in representations caused by 
differences in ambient and geodesic dis-
tances, by the discussion above we expect 
good reductions in the complexity of our 
coregularized function space H| . For 
CoMR, we define the view combination 
function as u 1 fA, f I 2 5 aAfA1 aIfI, for 
any fixed aA, aI [ R, and we define the 
space of final prediction functions as 
H| 5 5u 1 fA, f I 2 |  fA[HA, f I[HI 2 6. 
Then the CoMR optimization problem is 
 written as: arg minwP~

H min1f A, f I2Pu211w2 
R̂, 1w2 1gA ||fA||HA

2     1   gI 1 f I 2TMI f I 1
l f TMC f,  w h e r e  f 5 1 fA 1x1 2 , c, 
 fA 1xn 2 , f I 1x1 2 , c, f I 1xn 2 2T, and where 
MC, as before, is the coregularization 
matrix for two views. If MI is invertible, 
or if we make it so by adding a small 

ridge term, then HI  is a finite-
d imens iona l  RKHS wi th  norm 
||f I||I5"1 f I 2TMI f I  and kernel 
function k : M 3M S R given by the 
matrix 1MI 221. Thus our two views are 
proper RKHSs, and we may directly apply 
Theorem 1 to get an expression for a 
multiview kernel on M. Experiments in 
[ 9 ]  s h o w e d  t h a t  C o M R  w i t h 
aI5 aA5 1/2 significantly outperforms 
MR on several learning tasks. Note that if 
aI 2 0, then the final prediction function 
will only be defined on M, since f I is 
itself restricted to M. However, if we take 
aI5 0, our final prediction function will 
be fA, which is defined on all of X. For 
this special case, the CoMR objective fun-
ction can be written more simply as 
arg minf A[HA R̂, 1 fA 2 1 gA|| fA||HA

2 1gI 1 fA 2TMI 1I1 1gI/2l 2MI 221 f A. When we 
take l S `, the objective function reduc-
es to MR. As l S 0, the dependence on 
the unlabeled data vanishes as the last 
term in the objective function goes to 
zero. Thus l mediates between purely 
supervised learning at one limit and MR at 
the other limit. Note that when aI5 0, 
CoMR may be viewed as MR with a modi-
fied smoothness measure. See [5] for 
more details. 

CONCLUSION
We have presented a new RKHS where 
Tikhonov regularization incorporates 
both smoothness and multiview semi-
supervised assumptions, and subsumes 
manifold regularization and coregular-
ization as special cases. Compared 
with early frameworks, MVPCR gives 
prediction functions with out-of-sam-
ple extensions, handles multiple views, 
and allows for arbitrary linear combi-
nations of individual views, rather 
than simple averages. We expect that 
the multiview kernel will allow conve-
nient “plug-and-play” exploration of 
novel semisupervised algorithms, both 
in terms of implementation and per-
formance bounds. 
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and tradeoff, are discussed in Chapters 8, 
9, and 10.

Finally, the third part (Chapter 11 to 
Chapter 18) of this book explores the 
applications of cooperation beyond the 
physical layer, including content-aware 
cooperative multiple access protocols at 
the link layer, distributed cooperative 
routing at the network layer, cross-layer 
design based on source-channel coding 
with cooperation, and coverage expan-
sion and the network lifetime maximiza-
tion via cooperation.

One topic that this reviewer believes 
could have been better addressed in this 
book was hierarchical cooperation. In 
Chapter 4, the authors describe the lin-
ear capacity scaling achieved by hierar-
chical cooperation in a wireless ad hoc 
network. In this reviewer’s opinion, this 
topic would have benefited from its own 
targeted background section. For exam-
ple, defining capacity scaling and 
explaining its importance in wireless 
networks would have been beneficial for 
an audience of nonexperts. Further, in 
this chapter, the authors do not discuss 
the underlying propagation model and 
other assumptions involved in the 
 network modeling when they review 
Gupta and Kumar’s result for aggre-
gate throughput scaling limitations. 
Generally, this reviewer believed that 
this material was not connected well 
with the previous sections of this chap-
ter that focus on the outage capacity 

 performance for the small-scale fading 
channel, and that the exposition could 
have been improved by connecting it to 
better to the rest of the chapter. 

This book has many distinctive fea-
tures that make it attractive both as a 
textbook and as a reference. The depth 
of the discussions varies throughout the 
book. At the beginning of the text, the 
authors have made a significant effort 
to introduce the basic concepts behind 
radio propagation, the capacity of wire-
less channels, the various diversity tech-
niques to combat fading, as well as the 
state-of-the-art OFDM and MIMO tech-
niques. This allows a beginner to build 
up the requisite foundation easily. The 
material related to cooperative commu-
nications is presented in a coherent and 
integrated fashion. The authors describe 
different schemes to implement cooper-
ation, analyze these algorithms through 
evaluating the outage capacity and char-
acterizing diversity gains, and summa-
rize the tradeoff between system 
performance and operation complexity. 
This helps readers develop a broad 
understanding of the topic and obtain a 
comprehensive knowledge of the princi-
ples behind various methods. There are 
also sufficient references, concise chap-
ter summaries, and bibliographical 
notes for readers seeking more details. 

In terms of aesthetics and function-
ality, the book is very well designed. The 
formatting, font, and figures are all well 

laid out and organized, making the 
book easy to read. The figures in the 
book are quite attractive. Key examples 
are set out from the rest of the text by 
lined boxes. 

Cooperative Communications and 
Networking is likely to be positioned 
between the  book Cooperat ive 
Communications by Gerhard Kramer, 
Ivana Maric, and Roy D. Yates and the 
book Wireless Communications by 
Andrea Goldsmith. The former book has 
a narrower focus and can be viewed as a 
tutorial for the reader who is familiar 
with information theoretic concepts. 
The latter book provides a general dis-
cussion on current wireless systems, 
such as equalization, coding for wireless 
systems, diversity, multiple antennas 
communications, and spread spectrum. 
Compared with these two books, 
Cooperative Communications and 
Networking fills a slightly different mar-
ket need. In particular, Liu, Sadek, Su 
and Kwasinski’s book provides a more 
thorough treatment of material that is 
at the cutting edge of cooperative com-
munication over wireless network, and 
its treatment of cooperative communi-
cation is more advanced. Overall, 
Cooperative Communications and 
Networking is an excellent, reader- 
friendly book. This reviewer believes 
that this book will have a lasting impact 
upon those involved in cooperative com-
munications research. [SP]
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