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Abstract. Identifying relevant features for a classification task is an important issue
in machine learning. In this paper, we present a feature crediting scheme for multiclass
pattern recognition tasks, that utilizes the ability of Support Vector Machines to generalize
well in high dimensional feature spaces. Support Vector learning identifies a small subset
of training data relevant for the classification task. They primarily tackle the binary
classification problem. This scheme uses relevant examples to identify relevant features
for multi-class classification. We present, and employ for this purpose, an information-
theoretic measure of classifier performance. This measure addresses the key issue of average
rate of information being delivered by the classifier. It provides immunity to sampling bias
in the data and sensitivity to pattern of errors made by the classifier. Empirical results
on a number of datasets suggest efficient applicability to data with a very large number of
features.
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1 Introduction

A supervised learning algorithm attempts to induce a decision rule from which
to categorize examples of different concepts by generalizing from a set of training
examples. In trying to construct a classifier for a given categorization problem, there
arises a need to empirically evaluate the performance of decision rules induced by
different learning algorithms. As we will describe later, commonly used methods
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of comparing performance, like classification accuracy, suffer from a number of
inadequacies. More elaborate methods have also been suggested [1]. However, most
of these methods find applicability to only binary classification problems.

Another important issue concerns the description of the concept itself. Since
one does not a-priori know what attributes are required for this description, a
number of irrelevant features are recorded. Many learning algorithms suffer from
the curse of dimensionality, i.e, the time requirements for induction may grow very
fast as the number of features increases. Irrelevant features in such a case serve only
to increase the learning period. They add unnecessary complexity to the underlying
probability distribution of the concept label which the learning algorithm tries to
capture.

The problem of identification of relevant features for machine learning has
been looked into from two different lines of approach: filter and wrapper models [2],
[3]. In the filter model [4], [5] feature selection is performed as a preprocessing step
to learning. The selected features of the training examples are then presented to the
learning algorithm. In the wrapper model [2], feature selection is wrapped around
a learning algorithm relying on which the relevant features are selected. Many al-
gorithms under these models employ search routines that makes them prohibitively
slow for very high dimensional data.

The contribution of this paper is two-fold. We introduce an information the-
oretic method to evaluate a classifier so as to better characterize its performance,
in general on a multiclass problem. This evaluation is obtained by measuring the
average rate of information delivered by the classifier.

Our second contribution is to propose a scheme using this measure to efficiently
identify relevant features for a given classification task. To avoid any search routines,
our approach is as follows: Measure the information delivered by a classifier trained
on the full set of features and credit each feature according to its contribution to
this information flow by backpropagating this measure. This relevance estimate
is therefore based on performance of the classifier on the full set of features as
evaluated by our information measures. For such a scheme to be reliable, it is
crucial for the classifier to offer resistance to the effect of irrelevant features. Some
of its very useful properties make the Support Vector classifier [6] ideal for this
purpose. An alternate approach for feature crediting with less tolerant classifiers
can also formulated. This would involve an iterative procedure in which the classifier
is trained initially with a randomly selected subset of inputs. Features can then be
discarded and new features added based on estimates of informativeness provided
by our feature crediting scheme. Such a procedure offers the advantage of training
the classifier with lower input dimensionality and returning a trained classifier with
best input subset. However, it does involve the more expensive task of searching
the feature subset space and is a heuristic whose convergence properties cannot be
proved. This approach is not explored in this paper.

SVM training identifies a small subset of the training data relevant for the
construction of the classification boundary [6]. The information about the relevant
features should also be available from the relevant examples; hence the use of SVMs
provides the advantage of dealing with a much reduced subset of training data
to examine feature relevance. SVMs are able to generalize relatively well in very



high dimensional feature spaces [6], and are less affected by unnecessary excess
dimensionality than most other learning algorithms. This property has been used
in many applications of SVM classification [7], [8]. However, a good feature selection
for SVMs does lead to better performance [9]. In this paper, we explore if SVMs
can indeed provide reliable crediting and whether feature selection done accordingly
can be used to further improve learning in SVMs.

Our approach to feature selection therefore lies somewhere between the filter
and the wrapper models. This scheme is indeed wrapped around the Support Vector
learning algorithm but avoids a search routine. The reduced data in the form of
relevant examples and features can be presented to any other induction algorithm.
Therefore, this can also be considered as a preprocessing step similar to the filter
model.

In the following sections, we first very briefly review SVMs. We then introduce
an information theoretic method to evaluate performance of a classifier. We present
a simple feature crediting scheme based on these concepts and provide experimental
results suggesting applicability of the method to various domains.

2 Support Vector Machines

In this section we give a very brief introduction to Support Vector Machines [6],
[10]. SVMs realize the following idea: Map the training data & € X? into a high
dimensional (possibly infinite) space and construct an optimal separating hyper-
plane (OSH) in this space separating examples of two classes. Different mappings
Fe X ¢(F) € XP ( with X as the space of real or binary numbers, and p typi-
cally much larger than d) construct different SVMs.

The computation of the OSH can be carried out in the original input space by
using kernel functions, K (&%, ) = ¢(%).¢(¥). The OSH separates the examples of
the two classes by maximizing the hyperregion of separation. The OSH is therefore
the hyperplane with maximum distance (called margin in ¢ space) to the closest
image ¢(2;) from the training data. The margin can be seen as a measure of
the generalization ability: the larger the margin, the better the generalization is
expected to be [11]. The decision function given by an SVM is:

f(x) = sign(w.¢(Z) + b) = sign > iy K(Z3, T) + b 1)

i€support vectors

where y; is the class label for input vector z;; y; = +1 if £; belongs to the class
and —1 otherwise; b is a hyperplane parameter; and «; is the Lagrange multiplier
corresponding to 7, arising in the quadratic optimization procedure that attempts
to find the OSH. Only examples closest to the OSH contribute a non-zero a to the
sum in (1). These examples are called support vectors. Thus index 4 in (1) runs
over only the support vectors. In other words, SVMs identify a small subset of the
training data relevant for the classification task. For the non-separable case, the op-
timization problem involves a tradeoff between minimization of classification errors
and maximization of margin. The optimization problem is modified by introducing
slack variables allowing for misclassified vectors [12].



A very useful property of support vector machines is the ability to generalize
well in very high dimensional feature spaces [7], [8] making them suitable for our
feature crediting scheme. Also, since SVMs do not directly attempt to minimize the
error, but try to separate examples in high dimensional space, they are remarkably
insensitive to the relative sizes of the training set for a class, as noted in [8]. Most
learning algorithms are affected by unbalanced training data and tend to ignore
classes with smaller training set sizes, in trying to reduce the error rate.

Multiclass Support Vector Machines

SVMs are designed for binary classification. For multiclass problems several ap-
proaches have been proposed [13]. One approach has been to incorporate multiple
class labels directly into the quadratic solving algorithm. Another approach is to
combine several binary classifiers: one against one applies pairwise comparison be-
tween classes and in one against the rest, one class is compared with the rest.

According to a comparison study in [13], the accuracies of these methods are
roughly similar. We therefore chose to implement multiclass SVMs using the lowest
complexity approach i.e. the one against the rest. In this algorithm, for a M-class
classification problem, M binary SVMs are trained to separate a class (labelled
+1) from the other classes (labelled -1). A test example is labelled according to
maximum output among the M SVMs, before taking the sign in (1).

In the next section we introduce an information-theoretic method for evalua-
tion of classifier performance.

3 Information-Theoretic Classifier Performance
Evaluation

Consider the results of experiments on two medical domains, ’'breast cancer’ and
primary tumor’. The ’naive’ Bayes classifier achieved classification accuracies of
79% and 49% respectively [14]. At the first glance, the diagnosis of location of
primary tumor is poor while that of recurrence of breast cancer is acceptable.

A closer examination would reveal a different picture. In ’primary tumor’
there are 22 possible classes while 'breast cancer’ is a binary classification problem.
In addition, in ’breast cancer’ the prior probability of one of the two classes is
80%, while the prior probability of the major class in ’primary tumor’ is just 25%.
Therefore, achieving a classification accuracy of 79% in ’breast cancer’ is trivial since
the induction algorithm needs to learn only the input bias, while 49% in ’primary
tumor’ is fairly hard to achieve.

A fair evaluation criterion should therefore exclude the effect of prior class
probabilities. Multiple evaluation parameters [15] and more involved methods [1]
can be used for a detailed picture of classifier performance. This can be cumbersome.
Besides, these methods find applicability in only binary classification problems.
There exists a need to have a single measure of performance of a classifier for multi-
class problems capturing the details.

To be able to compare classifier performance across different domains, one



also needs to compare the difficulty of decision problems. A problem with multiple
classes with equal prior probabilities can be expected to be harder than a problem
with great differences between prior probabilities.

We now introduce an entropy-based measure of classifier performance that
addresses these problems. In this paper we will not be concerned with other pa-
rameters like the amount of information available for classification ( 4.e. the training
data), the time and computational cost requirements, for performance evaluation.
Our model of a classifier is that of black-box with input lines corresponding to the
features of an input vector and M output class indicators, one of which fires when
the classifier is shown an input vector.

3.1 Average Rate of Information delivered by the Classifier

Consider an external observer attempting to classify an input vector with just the
knowledge of the class distributions i.e. the prior probabilities of different classes
given an input. When armed also with the knowledge of the performance on a test
set, of a trained classifier which has learnt a decision rule, the observer has access to
additional information which the classifier delivers. The performance of the classifier
can be measured by considering: By how much does the uncertainty about the class
of an input reduce by observing the classification done by the classifier ? Notice
that this approach is significantly different from other criteria like the classification
accuracy. For example, consider a trained classifier that classifies all instances of
Class 1 as Class 2 and vice versa. Such a classifier has nil accuracy but delivers the
very useful information that firing of Class 2 indicator implies an instance of Class
1 with little uncertainty. One therefore needs to measure the wtility of the classifier
in determining the true class of the input.

Given a trained classifier and its performance on a test set, this measure can
be mathematically constructed by considering:
e Confusion Matrix Q: The performance of a trained pattern classifier on test dataset
is recorded by the elements of this matrix. The element g;; is the number of times
a test-set input actually labelled C; is labelled C; by the machine.
e In the absence of the classifier, with just the knowledge of input distribution over
the classes, an external user faces a certain amount of uncertainty in being able to
label a new, unseen and unlabelled instance. This can be used as a measure of the
difficulty of a decision problem. The probability that an incoming unseen input (I)
has a true label Cj:
P(IeC) = 2 9

2ij g

The uncertainty associated therefore is [16]:

Hy(I) = —P(I € Ci)logP(I € C;)

¢ Given that the incoming input has been labelled C; by the machine(output vari-



able 0), the probability that its actual label was C; is :

P(I € C,|O S Cj) =Ppij = 251;;
i 417

The uncertainty in the input classification after observing output C; therefore is:

Ho,(I|0 € Cj) = Z —pijlog(pi;)

%

e The probability of observing Cj is:

2. %ij
PO € Cj) =po*t = &4
! ! Eij dij
The expected uncertainty in the class of an incoming input given the classification

done by the machine over the test set, can be calculated by factoring in relative
probability of firing of the various class indicators:

Ho(I10) =) P(0 € C)).Ho, (IO € Cj)

e The amount of uncertainty in the input labelling resolved by observing the clas-
sification done by the machine therefore is:

Hclassifier = Hd - HO (2)

A good classifier reduces the uncertainty about the class of an input by providing its
output to the observer. Therefore, the performance of the classifier can be measured
by the difference in the prior and posterior uncertainties. We will call Hejgssifier as
classifier information.

3.2 Some properties of the entropy based evaluation criterion

1. Heassifier, like classification accuracy, is sensitive to the number of misclas-
sified vectors and not to the margin of error. Measures like root mean square
error (RMSE) suffer from the disadvantage of becoming misleading in case of
a few large errors.

2. As explained in the previous section, Hjsssifier is able to exclude the ef-
fect of prior probabilities in estimating the classifier performance. The prior
uncertainty term Hy takes into account the difficulty of the decision problem.

3. Hiigssifier captures a more detailed picture of the classifier performance by
providing sensitivity to pattern of errors. Consider the following confusion
matrices. Note that a column represents the distribution of answers given by
a particular class indicator to instances of different true classes, whereas a row
represents how instances of a class are distributed over various indicators.



(a) (b) (c)
Class Indicators — 1 2 3 1 2 3 1 2 3
Actual Class |
1 15 0 5 16 2 2 1 0 4
2 0 15 5 2 16 2 0 1 4
3 0 0 20 1 1 18 1 1 48

The classification accuracy for all cases is 50/60 = 83%. Hy for case (c) is
0.82 bits indicating little prior uncertainty as compared to H; = 1.58 bits
for cases (a) and (b) where the three classes have equal prior probability
involving 20 examples in each. The observer can demonstrate good accuracy
even without the classifier in (¢) by labelling all instances as class 3. As the
confusion matrix shows, even without constructing good decision boundaries
for class 1 and class 2, the classifier achieves a high classification accuracy.
However, Hcjassifier = 0.06 bits indicating that the underlying classification
task has not been solved by the classifier, whereas Hjqssifier (@) = 0.96 bits
and Hegssifier(b) = 0.78 bits. The classifier performs better on (a) because
with the information of firing of class 1 or 2, the observer can be confident
about the class of the input. In (b), firing of class 1 or class 2 maintains slightly
greater uncertainty than (a) by sometimes firing for other classes. Notice that
even though the class 3 indicator in (b) is more reliable than that in (a), the
classifier overall performs better in (a) on account of greater reliability of class
1 and class 2 indicators.

4. Performance of different classifiers on the same domain can be measured by
comparing relative classifier information = Heygssifier /| Hqa*100% while classi-
fier information H jqssifier can be used for comparison across different decision
problems.

4 Information Backpropagation
4.1 Crediting Class Indicators

Having obtained the information being delivered by the classifier, we begin to prop-
agate this information flow backward to examine how individual components of the
classifying machine contribute to the flow. Consider the question : How much of the
resolution of the input uncertainty by the classification of the machine can be cred-
ited to the performance of a particular output class indicator ? It is desirable that
the information credited to each class indicator be such that (a) It reflect the differ-
ence in a-priori and a-posteriori uncertainties. (b) It reflect the frequency of firing
of the indicator. (c) The sum across the indicators should add up to Heigssifier-

The first condition ensures that class indicators that fire only for instances of
a particular class are given more credit. Class indicators firing for multiple classes
maintain observer uncertainty. The second condition ensures that rarely firing class
indicators get less credit. Such indicators might be either specializing in rare classes
or failing to fire even when the input is from their class. The third condition is a
normalization constraint.



The usefulness of the knowledge of the firing of a particular indicator can be
measured relative to a hypothetical worst case indicator whose firing only maintains
maximum uncertainty about the actual label ,i.e., it only suggests that all possible
classifications are equally likely. The uncertainty associated with such an indicator
is logM where M is the number of output classes. The uncertainty of an input
given that an indicator j has fired, as defined earlier, is Ho,. Thus the usefulness
of this indicator measured relative to the worst case indicator can be written as :

¥ (log(M) — Ho,)
> p¢*(log(M) — Ho,)

Note that this credit assignment uses the worst case a-posteriori uncertainty
instead of a-priori uncertainty for individual class indicators to incorporate condi-
tion (a). A-priori uncertainties for a classification task are taken as the uncertainty
in the absence of the classifier. A class indicator carries no meaning in the absence
of the classifier. We deal with the issue of a-priori uncertainty of a class indicator
to mean uncertainty prior to training. Intuitively, this would imply the worst-case
class indicator as used in the crediting above. This is satisfying also because any
crediting scheme with credits according to normalized weightage of the overall per-
formance must have weights guaranteed to be >= 0 for all cases, with no credits
(weight =0) for worst case performance.

Hj = Hclassifier

Crediting Individual SVMs

The information flow through the multiclass SVM can be similarly defined as :
Hgym = Hy — Hp , where the entropy terms can be calculated by observing the
performance of the multiclass SVM for M classes, on the test set. Each SVM can
therefore be credited for this flow according to the heuristic measure introduced
above :

oy _P"(log(M) — Ho))

T Y pt (log (M) — Ho,)
where j is the jt* SVM separating class j from the remaining classes and p;?“t, as
defined earlier, is its frequency of firing.

3)

Crediting Features

To examine the informativeness of the features, we backpropagate the information
further onto the input side. To credit the features with their contribution to the
information flow there are two considerations to be guided by: (a) The credit must
be proportional to the degree of influence the feature has on the performance of an
SVM and (b) The total credit assigned to the features should add up to Hegssifier-

The generalization performance of an SVM depends on the margin. The
margin of a trained SVM is proportional to the inverse root of :

w® =" ae;yy; K (55, 75) (4)
ij



where ¢ and j run over the set of support vectors; «; is the Lagrange multiplier
corresponding to it" support vector; y; is the class label on 7, i.e, it is +1 or —1
depending on whether the support vector belongs to the class for which the SVM
is trained.

Intuitively, the absolute value of the derivative of inverse-margin-square with
respect to ki feature provides the degree of influence of the kt* feature on the
generalization performance on the SVM. This can be written as :

OK (T3, 75
Du(w?) = 3013 ey ) )
i g J

Here :cf is the k' component of #; and the partial derivative is evaluated at ;. For
example, if the kernel K (&},2;) = (#;.25)?, this derivative becomes 2 x (z}.7;)z¥ .
This is similar to several methods proposed [17] for feature extraction in neural
networks to evaluate relevance of a variable by the derivative of the output with
respect to this variable. The sum of the absolute value of derivatives has been used
in [18]. These methods involve the sum over the entire training set. With SVMs,
the sum in (5) is only over the set of support vectors.

For multiclass SVM , the features can therefore be credited for the overall
information flow according :

Dy
2 Dp
where r runs over the output classes ; p runs over the features. Credit(k) gives the
credits assigned to feature k. Dj is the derivative of the margin of the rth SVM

(trained to separate class r from the rest) with respect to feature p. H, can be
calculated from (3).

Credit(k) =Y H, (6)

5 A Feature Crediting Algorithm

Based on these concepts, the following feature crediting algorithm can be formu-
lated. We will call this the SVM Information Backpropagation or SVM-Infoprop
algorithm:

1. For an M-class classification problem , train M Support Vector Machines to
build a multiclass classifier according to one-against-rest and using all the fea-
tures. This will identify the set of support vectors and corresponding Lagrange
multipliers for each SVM.

Pass the test data : Construct confusion matrix.

Calculate information flow through the classifier from (2).

Credit each SVM according to (3).

ool W

Use the set of support vectors and corresponding Lagrange multipliers to
calculate derivatives of the margin with respect to each feature according to
(5) for each SVM.
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6. Assign credits to each feature according to (6).

SVM-Infoprop is a feature crediting algorithm that can be used for feature selection
by employing a user-specified credit threshold. Features with credits below the
threshold can be discarded. The threshold can be estimated from the credits versus
features plot. It is fair to expect irrelevant features to contribute little to the
information delivered by the SVMs which are resistant to their effect. Hence, such
credit assignment should distinguish well between irrelevant and relevant features.

6 Experiments

To test the SVM-Infoprop algorithm, we tried feature crediting on several multiclass
artificial and real-world datasets. These datasets include : a synthetic dataset that
we constructed, LED-24, Waveform-40, DNA, Vehicle, and Satellite Images (SAT)
drawn from the UCI repository [19]; and three datasets which are a subset of the
Reuters document collection [20]. Table 5 lists the details of these datasets. We
first examine the informativeness of features using SVM-infoprop in each of these
datasets and then tabulate a comparison across different domains.

Synthetic Dataset

This 3 class and 9 attribute dataset was generated to test the algorithm. To intro-
duce input bias, an example had the probabilities 0.5, 0.3 and 0.2 of belonging to
Class 1, 2, or 3 respectively. 200 training and 100 test examples with this bias were
generated. An example of Class ¢ (i € 1,2,3) had feature ¢ drawn from a normal
distribution of mean i and variance 0.1, and features j ( j € 1,2,3 and j # 1) drawn
from a normal distribution with mean 0 and variance 0.1. The remaining 6 features
of all examples were just noise drawn from a Gaussian of variance 20 around the
mean 0. The relevant features, therefore, in this problem are 1, 2, 3.

Linear Support Vector Machines (C=200) were trained for this problem. The
classification accuracy obtained was 100% on the test set. The credits assigned by
the SVM-Infoprop are shown in the Figure 1. The relevant features are very sharply
identified. Feature 1 gets maximum credit on account of being relevant for the most
informative SVM, in this case decided purely by the input bias.

LED Dataset

This 10-class dataset, drawn from the UCI repository, consists of 200 training and
500 test examples of 24 binary-valued features each. The first 7 features are relevant,
and correspond to LEDs on a display which are either on or off. The remaining 17
features are randomly distributed. The problem becomes more difficult because of
the introduction of noise. Each relevant attribute has 10% probability of having its
value inverted.

Linear SVMs (C=200) were trained; Figure 1 shows the credits assigned to the
features by SVM-Infoprop. The algorithm selects the 7 relevant features at a credit
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Figure 1. Credit Assignment for (a) Synthetic Dataset and (b) LED Dataset
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threshold of 0.09. With all features, a classification accuracy of 67% is obtained on
the test set. On training with best 14 features, the accuracy improved to 72.4% and
further to 73% with the best 7. The relative classifier information (Hsvim/Hd * 100)
improved from 50% with full set of features, to 55% with 14 best features and 57%
with best 7.

Waveform4( Dataset

The Waveform dataset has been applied to examine how well a feature selec-
tion algorithm works in the presence of high number of irrelevant features [21],[22].
The dataset contains 300 examples with every example assigned to one of three
classes. Each example has 40 continuous feature values. The dataset is generated
such that features {1,2, ....... 21} are necessary for class separation, whereas features
{22,23, ....... ,40} have random values. A training size of 200 and test size of 100
examples was used in the experiments.

Figure 2 shows credits on the 40 features of the dataset by popular feature
weighting algorithms FUBAFES [22] and RELIEF-F [23] and also the credits as-
signed by SVM-Infoprop (Linear SVMs; C = 200). There exists a strong correlation
between the weights assigned by RELIEF-F, EUBAFES and SVM-Infoprop.

As mentioned in [22] , FEUBAFES fails to select feature 1 and 21 or 1, 2, 20
and 21 depending on certain parameters of the algorithm. As explained in that
work, this may happen, contrary to the design of the dataset, because of presence
of noise in every feature. SVM-Infoprop shares the same difficulty and is able to
select features 2 to 19 at a credit threshold of 0.0105.

DNA Dataset

The DNA dataset is a 3 class problem with 180 binary valued features encoding DNA
sequences. The problem posed in this dataset is to recognize the boundaries between
exons (the parts of the DNA sequence retained after splicing) and introns (the parts
of the DNA sequence that are spliced out). The classification task therefore is : given
a position in the middle of a window of DNA sequence elements (called nucleotides
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Figure 2. Feature Weighting in Waveform 40 dataset by EUBAFES,
RELIEF-F, and SVM-Infoprop

L1 40 LR % Tes = g iThs,

e o o g

Waveform 40: SVM-Infoprop feature weights

0.04 ——FT T T T T T T
0.03
5
S 0.02
2
0.01 |
0 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40
features

or base-pairs), decide if this is an intron-exon boundary, exon-intron boundary or
neither.

The credits given to each feature by SVM-Infoprop implemented by training
linear SVMs ( C=2000) for the three classes, are shown in Figure 3.

Attributes closest to the junction towards the middle of the sequence are more
relevant [24]. This implies greater relevance of features around 60 to 120. As can be
seen from Figure 3, the feature crediting scheme is able to identify these attributes.

Based on these credits, the best subset of 80 and 30 features were selected.
These numbers were taken so as to compare results with [25]. The training(2000
examples) and test(1186 examples) sets were also the same. A comparison of best
classification accuracies for the filter method introduced in [25] and used with Naive-
Bayes [27] and C4.5 [28] induction algorithms is shown in Table 1. The multiclass
SVM trained with the selected features shows improvement in both the classifier
accuracy and the information delivered as compared to performance on the full set
of features.

As a matter of comparison, the wrapper introduced in [26] selected 11 fea-
tures with induction algorithms Naive-Bayes and C4.5. This took several hours.
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Table 1. Results for DNA dataset: Classification Accuracy with Naive-
Bayes, C4.5 and SVMs. The SVM column also lists Relative Classifier Information
(R.C.I)

# Features Naive-Bayes C4.5 SVM (Classification Accuracy, R.C.I)
180 93.3% 92.3% 94.68%, 76.85%
Features Naive-Bayes FS | C4.5 FS | SVM-Infoprop (Classification Accuracy, R.C.I)
80 94.9% 93.4% 96.12%, 81.95%
30 93.8% 93.8% 95.36%, 79.70%

Training SVMs with 180 features, crediting features, and retraining SVMs with
best 11 features took a total time of about 70 min (P-III, 500MHz) with similar
classification accuracy. The implementation of SVMs [29] we used, does not employ
Platts Sequential Minimal Optimization (SMO) known to be an order of magnitude
faster [30],[31] SVM training algorithm for problems such as this where input data
is largely sparse and linear SVMs are employed.

Figure 3. Credit Assignment for DNA dataset
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Vehicle and Satellite Datasets

The Vehicle dataset is a multiclass pattern recognition problem of classifying a
given silhouette as one of four types of vehicle. There are 18 features. The Satellite
dataset is a 6-class and 36-feature dataset containing Landsat satellite data. We
tested SVM-Infoprop for non-linear SVMs with these datasets. Support Vector
Machines with polynomial kernels of degree 2 were trained with 564 examples and
tested with 282 examples for the Vehicle data. For the Satellite data, the training
set consists of 4435 examples and the test set consists of 2000 examples. Class 4 was
trained with the Anova Kernel ( k(x,y)=(3>",; exp(—v(zi—y;)))?) of degree d = 1 and
v = 0.01. The remaining classes were trained with polynomial kernels of degree 2.
Since the outputs are in different feature spaces, the simple normalization technique
of dividing the outputs by the margin [32] was done before making comparisons.
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The performance of the SVMs on full set of features and on subsets of fea-
tures ranked best by SVM-Infoprop is shown in Table 2 for the Vehicle dataset and
Table 3 for the Satellite dataset. Also shown for comparison is the performance
best among linear feature extractors like PCA (Principal Component Analysis) and
LDA (Linear Discriminant Analysis), and Mutual Information based feature selec-
tors like MIFS (Mutual Information Feature Selector), SMIFE(Separated Mutual
Information Feature Extractor) and MMIP (Maximum Mutual Information Pro-
jection) [33]. The SVM-Infoprop column lists classification accuracy and relative
classifier information (R.C.I). The accuracies for the best among PCA, LDA, MIFS,
MMIP and SMIFEFE are approximate.

Table 2. Results for Vehicle dataset: Classification Accuracy and Relative
Classifier Information (R.C.I)

# Features SVM-Infoprop Best classification accuracy among
(Classification Accuracy, R.C.I) | PCA, LDA, MIFS, MMIP, SMIFE

18 49.64%, 24.13% 50.00%

12 70.21%, 47.52% 59.00%

Table 3. Results for Satellite dataset: Classification Accuracy and Relative
Classifier Information (R.C.I)

# Features SVM-Infoprop Best Classification Accuracy among
(Classification Accuracy, R.C.I) | PCA, LDA, MIFS, MMIP, SMIFE

36 78.10%, 63.80% 80.00%

19 79.00%, 65.05% 80.00%

Note that mutual information based methods like MIF'S, MMIP, and SMIFE
require quantization of continuous input variables. This demands computational
complexity and data requirements. By dealing with discrete output variables, In-
formation Backpropagation eliminates this need.

Text Classification : Reuters Dataset

The ability of SVMs to generalize well in very high dimensional spaces allows us
to use SVM-Infoprop in the domain of information retrieval. These applications
involve very large number of features.

We constructed three subsets of the Reuters collection. The first subset
Reuters-1 comprises of articles on the topics coffee, iron-steel and livestock. These
topics are not likely to have many meaningful overlapping words. The second sub-
set Reuters-2 contains articles on reserves, gold and gross national product, likely
to have similar words used in different contexts across these topics. Both these sub-
sets were applied in [25]. Reuters-3 was constructed to examine the performance of
SVM-Infoprop on even larger dimensionality. It contains articles on the five most
frequent Reuters categories : earn, acq, money-fzr, grain and crude. Each article was
binary-encoded where each feature denoted whether a particular word occurred in
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the article or not. As a preprocessing step, all articles with more than 30% content
numeric were excluded from the dataset and words occurring less than 3 times in
each dataset were eliminated to remove extremely rare words.

Mutual Information is among the most popular techniques (used in [34]) for
feature reduction in text classification. Features that have the highest average
mutual information with the class variable are selected. In Table 3 we tabulate the
performance of SVMs on the full set of features and features selected by Mutual
Information and SVM-Infoprop (Linear SVMs with C = training set size). In each
case, we performed drastic feature selection selecting roughly the top 20% features
as ranked by these two different techniques.

As Table 4 shows, with both Mutual Information and SVM-Infoprop, the
classifier maintains acceptable levels of performance on drastic feature reduction.
As for resource consumption, the major component of SVM-Infoprop runtime is
the training time of the SVMs with all the features. With Platts SMO, SVMs
have been reported to very impressive training times on the text classification task
[34]. For the largest dataset, Reuters-3, the training time had an average of 11
min per SVM. The feature crediting module is very quick since it processes only
the support vectors, which in Reuters-3, average 475 per class. As in the DNA
dataset which involves sparse input and linear SVMs, we expect this to be up to
an order of magnitude faster with SMO indicating that SVM-Infoprop is a useful
feature crediting technique for text categorization. By comparison, wrappers as in
[2] would roughly take the order of thousands of hours for similar feature selection.
In real-valued feature representation, this also eliminates the need for quantization
of inputs variables, as required in mutual information based techniques.

Table 4. Performance on the Reuters dataset: Classification Accuracy and
Relative Classifier Information (R.C.I)

Dataset # Features Mutual Information SVM-Infoprop
Training Set Size, Classification Accuracy, | Classification Accuracy,
Test Set Size R.C.I R.C.I

Reuters-1 (199, 113) | 2225 (full set) 96.46%, 87.42% 96.46%, 87.42%
431 99.12%, 96.18% 98.23%, 93.45%

Reuters-2 (193, 162) 2344 (full set) 94.44%, 77.95% 94.44%, 77.95%
458 95.67%, 83.72% 93.83%, 76.52%

Reuters-3 (3257, 2912) | 8167 (full set) 93.00%, 78.80% 93.00%, 78.80%
1167 92.00%, 76.77% 93.10%, 79.00%

7 Comparison across different domains

Table 5 lists the details of the datasets used for experimentation and the perfor-
mance of the multiclass Support Vector Machine with all features in terms of clas-
sifier information and classification accuracy.

The multiclass SVM performs unimpressively on the LED and Satellite (SAT)
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datasets according to classification accuracy. However, this does not take into ac-
count the difficulty of the decision problem and the prior-probabilities. LED and
SAT involve maximum number of classes and the least probabilities for the major
class in the collection of datasets used, which makes them the most difficult prob-
lems. Achieving even 67% and 78.1% accuracy respectively on these problems is
not an easy task. This can be seen by the highest H; values for these datasets. In
fact, as classifier information Hg,,, brings out, the multiclass SVM performs best
in these datasets. By comparison, high classification accuracy for the Synthetic and
the DNA datasets overlooks the fact that the major class in these 3-class datasets
occurs half the time.

Table 5. Datasets used for Experiments: A comparison of performance on
full set of features

Dataset # Classes | # Features Probability Hy Hgym | Classification
of major class Accuracy
Artificial
Synthetic 3 9 50% 1.48 1.48 100%
LED 10 24 10% 3.31 1.67 67%
Waveform40 3 40 43% 1.54 0.62 79%
Real World
DNA 3 180 51% 1.49 1.15 94.68%
Vehicle 4 18 25.77% 1.99 0.48 49.66%
SAT 6 36 23.5% 2.5 1.60 78.1%
Text
Reuters-1 3 2225 36.28% 1.58 1.38 96.46%
Reuters-2 3 2344 43.21% 1.52 1.18 94.44%
Reuters-3 5 8167 38.15% 2.00 1.58 93%

8 Conclusion

Classifier Information, as a performance evaluation criterion, effectively addresses
many problems with measures like classification accuracy. It takes into account
prior-probabilities of classes and captures performance details in a single measure
for multiclass problems.

SVM Information Backpropagation is an output-side heuristic for feature cred-
iting. It eliminates the need for quantization of continuous features as required in
many feature selection techniques. SVMs provide the relevant examples for classi-
fication in a dataset. Information Backpropagation explores feature relevance from
these relevant examples. This scheme is able to identify relevant features without
expensive search routines in a variety of classification tasks, including those that
involve very high dimensionality and unbalanced data. As many of our experi-
ments have indicated, feature selection using this technique can improve learning
in Support Vector Machines.
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