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Abstract

The Co-Training algorithm uses unlabeled
examples in multiple views to bootstrap clas-
sifiers in each view, typically in a greedy
manner, and operating under assumptions
of view-independence and compatibility. In
this paper, we propose a Co-Regularization
framework where classifiers are learnt in each
view through forms of multi-view regular-
ization. We propose algorithms within this
framework that are based on optimizing mea-
sures of agreement and smoothness over la-
beled and unlabeled examples. These algo-
rithms naturally extend standard regulariza-
tion methods like Support Vector Machines
(SVM) and Regularized Least squares (RLS)
for multi-view semi-supervised learning, and
inherit their benefits and applicability to
high-dimensional classification problems. An
empirical investigation is presented that con-
firms the promise of this approach.

1. Introduction

A striking aspect of natural learning is the ability to
integrate and process multi-modal sensory information
with very little supervisory feedback. The scarcity of
labeled examples, abundance of unlabeled data and
presence of multiple representations are aspects of sev-
eral applications of machine learning as well. An ex-
ample is hypertext classification: Modern search en-
gines can index more than a billion web-pages in a
single web-crawl, but only a few can be hand-labeled
and assembled into web directories. Each web-page
has disparate descriptions: textual content, inbound
and outbound hyperlinks, site and directory names,
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etc. Although traditional machine learning has fo-
cussed on two extremes of an information spectrum
(supervised and unsupervised learning), a number of
recent efforts have considered the middle-ground of
semi-supervised learning, with or without a multi-
view component (Belkin, Matveeva, & Niyogi, 2004;
Belkin, Niyogi & Sindhwani, 2004; Sindhwani, Niyogi
& Belkin, 2005; Joachims, 1999; Joachims, 2003; Blum
& Mitchell, 1998; Brefeld & Scheffer; Chapelle & Zien,
2005; Zhou et al, 2004).

The Co-Training framework proposed in (Blum &
Mitchell, 1998) has been among the first efforts that
provided a widely successful algorithm with theoretical
justifications. The framework employs two assump-
tions that allow unlabeled examples in multiple-views
to be utilized effectively: (a) the assumption that the
target functions in each view agree on labels of most
examples (compatibility assumption) and (b) the as-
sumption that the views are independent given the
class label (independence assumption). The first as-
sumption allows the complexity of the learning prob-
lem to be reduced by the constraint of searching over
compatible functions; and the second assumption al-
lows high performance to be achieved since it becomes
unlikely for compatible classifiers trained on indepen-
dent views to agree on an incorrect label. The co-
training idea has become synonymous with a greedy
agreement-maximization algorithm that is initialized
by supervised classifiers in each view and then it-
eratively re-trained on boosted labeled sets, based
on high-confidence predictions on the unlabeled ex-
amples. The original implementation in (Blum &
Mitchell, 1998) runs this algorithm on naive-bayes
classifiers defined in each view. For more on agreement
maximization principles, see (Abney, 2002; Dasgupta,
Littman & McAllester, 2001; Collins & Singer, 1999;
Yarowsky, 1995).

In this paper, we present a Co-Regularization frame-
work for multi-view semi-supervised learning. Our ap-
proach is based on implementing forms of multi-view



regularization using unlabeled examples. We suggest a
family of algorithms within this framework: The Co-
Regularized Least Squares (Co-RLS) algorithm per-
forms a joint regularization that attempts to mini-
mize disagreement in a least squared sense; the Co-
Regularized Laplacian SVM and Least Squares (Co-
LapSVM, Co-LapRLS) algorithms utilize multi-view
graph regularizers to enforce complementary and ro-
bust notions of smoothness in each view. The recently
proposed Manifold Regularization techniques (Belkin,
Niyogi & Sindhwani, 2004; Sindhwani, 2004; Sind-
hwani, Niyogi & Belkin, 2005) are employed for Co-
LapSVM and Co-LapRLS. Learning is performed by
effectively exploiting useful structures collectively re-
vealed with multiple representations.

We highlight features of the proposed algorithms:

1. These algorithms arise from natural extensions of
the classical framework of regularization in Re-
producing Kernel Hilbert Spaces. The unlabeled
data is incorporated via additional regularizers
that are motivated from recognized principles of
semi-supervised learning.

2. The algorithms are non-greedy, involve convex
cost functions and can be easily implemented.

3. The influence of unlabeled data and multiple
views can be controlled explicitly. In particu-
lar, single view semi-supervised learning and stan-
dard supervised algorithms are special cases of
this framework.

4. Experimental results demonstrate that the pro-
posed methods out-perform standard co-training
on synthetic and hypertext classification datasets.

In section 2, we setup the problem of semi-supervised
learning in multiple views. In subsequent sections, we
discuss the Co-Regularization framework, propose our
algorithms and evaluate their empirical performance.

2. Multi-View Learning

In the multi-view semi-supervised learning setting, we
have labeled examples {(z;,y;)}_; and unlabeled ex-
amples {xz}ﬁfl‘ where each example z = (21, 2(?)) is
seen in two views with z(!) € X and 2® ¢ X,
The setup and the algorithms we discuss can also be
generalized to more than two views. For the rest of this
discussion, we consider binary classification problems
where y; € {—1,1}. The goal is to learn the func-
tion pair f = (fM, f@), where f@ : XMW — {—1,1}
and f@ : X® s {~1,1} are classifiers in the two

Figure 1. Bipartite Graph Representation of multi-view
learning. The small black circles are unlabeled examples.
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views. In this paper, we will focus on how the avail-
ability of unlabeled examples and multiple views may
be profitably leveraged for learning high-performance
classifiers f(), f(2) in each view.

How can unlabeled data and its multiple views help?
In Figure 1(a), we reproduce the bipartite graph rep-
resentation of the co-training setting, to initiate a dis-
cussion. The figure shows the two views of labeled
and unlabeled examples, arranged as a bipartite graph.
The left and right nodes in the graph are examples as
seen in view 1 and view 2 respectively, with edges con-
necting the two views of an example. The unlabeled
examples are shown as small black circles and the other
examples are labeled. The class of compatible pairs of
functions identically label two nodes in the same con-
nected component of this graph. This may be inter-
preted as a requirement of smoothness over the graph
for the pair (f(), £()). Thus, unlabeled examples pro-
vide empirical estimates of regularizers or measures of
smoothness to enforce the right complexity for the pair

(0, @)

In many applications, it is unrealistic for two examples
to share a view exactly. A more realistic situation is
depicted in Figure 1(b) where three types of edges are
shown: (solid) edges connecting views of each example
as in Figure 1(a); (dashed) edges connecting similar
examples in each view; and (dotted) edges connecting
examples in each view based on similarity in the other
view. The similarity structure in one view induces a
complementary notion of similarity in the other views
with respect to which regularizers can be constructed
using unlabeled data.

In the next section, we describe algorithms that arise
from constructions of such regularizers.



3. Co-Regularization

The classical regularization framework (Poggio &
Girosi, 1990; Schoelkopf & Smola, 2002; Vapnik, 1998)
for supervised learning solves the following minimiza-
tion problem :

!
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f* = argmin —Z (i, 4, ) + 1 £ (1)
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where Hg is an Reproducing Kernel Hilbert space
(RKHS) of functions with kernel function K;
{(zs,y:)}l_,, is the labeled training set; and V is
some loss function, such as squared loss for Regular-
ized Least Squares (RLS) or the hinge loss function
for Support Vector Machines (SVM). By the Repre-
senter theorem, the minimizer is a linear combination
of kernel functions centered on the data:

Eal (z,z;)

This real-valued function is thresholded and used for
binary classification.

In the Co-regularization framework, we attempt to
learn the pair f = (f(), £)) in a cross-product of two
RKHS defined over the two views, i.e., f1) € Hpq)
and f® € Hpy. The key issue is imposing an ap-
propriate notion of complexity on this pair so that a
regularized solution effectively utilizes unlabeled data
in the two views. We now describe some ideas.

Co-Regularized Least Squares

A natural idea is to attempt to learn the pair f =
(f, £@) so that each function correctly classifies the
labeled examples, and the outputs of the pair agree
over unlabeled examples. This suggests the following
objective function:
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Here, 1 is a real-valued parameter to balance data fit-
ting in the two views, 71,72 are regularization param-
eters for the RKHS norms in the two views, and v¢
is the coupling parameter that regularizes the pair to-
wards compatibility using unlabeled data. It is easy

to see that a representer theorem holds that expresses
the minimizing pair (f D (2 W), f@* (! ) in the fol-
lowing form:

I+u I+u
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The (I + u) dimensional expansion coefficient vectors
a, 8 may be computed by solving the following coupled
linear system:
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where Y is a label vector given by Y; = y; for 1 <14 </
and Y; =0 for [+ 1 <17 <[4w; J is a diagonal matrix
given by J;; = |Y;|, and K, Ky are gram matrices of
the kernel functions K, K2 over labeled and unla-
beled examples.

When ¢ = 0, the system ignores unlabeled data and
yields an uncoupled pair of solutions corresponding to
supervised RLS. We also note a curious relationship
over coeflicients corresponding to unlabeled examples:
yia; = —y9fF; for | +1 < i <[+ u. The algorithm
appears to work well in practice when orthogonality to
the constant function is enforced over the data to avoid
all unlabeled examples from being identically classi-
fied.

Working with the hinge loss, one can also extend SVMs
in a similar manner. This has not been attempted in
this paper.

Co-Laplacian RLS and Co-Laplacian SVM

The intuitions from the discussion concerning Figure
1(b) is to learn the pair f = (f®), f®) so that each
function correctly classifies the labeled examples and
is smooth with respect to similarity structures in both
views. These structures may be encoded as graphs
on which regularization operators may be defined and
then combined to form a multi-view regularizer. The
function pair is indirectly coupled through this regu-
larizer.

We assume that for each view (indexed by s = 1,2), we
can construct a similarity graph whose adjacency ma-
trix is W), where Wi(f) measures similarity between
xgs) and x( ). The Laplacian matrix of this graph is
defined as L(s) = D®) — W) where D) is the di-
agonal degree matrix Dz(f ) = Zj Wi(;). The graph
Laplacian is a positive semi-definite operator on func-
tions defined over vertices of the graph. It provides



the following smoothness functional on the graph:
gTL(S)g _ Z(gl . gj)ZWi(;)
ij

where g is a vector identifying a function on the graph
whose value is g; on node i. Other regularization
operators can also be defined using the graph Lapla-
cian (Kondor & Lafferty, 2003; Smola & Kondor, 2003;
Belkin, Matveeva, & Niyogi, 2004).

One way to construct a multi-view regularizer is to
simply take a convex combination L = (1 — a)LM) +
aL® where a >0 is a non-negative parameter which
controls the influence of the two views. To learn the
pair f = (f1*, f2*) we solve the following optimiza-
tion problems for s = 1,2 using squared loss or hinge
loss:

l
1 .
f(S)* = argmin - E V(Igé),yivf(s))+
f(S)GHK(s) l i=1
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where £ den(gl’ges the vector
(f(s)(xgs)), o f® (xl(i)u)) ; and the regulariza-

tion parameters WS),7§S) control the influence of

unlabeled examples relative to the RKHS norm.

The solutions to these optimization problems produce
the recently proposed Laplacian SVM (for hinge loss)
or Laplacian RLS (for squared loss) classifiers trained
with the multi-view graph regularizer (Belkin, Niyogi
& Sindhwani, 2004; Sindhwani, Niyogi & Belkin,
2005; Sindhwani, 2004). The resulting algorithms are
termed Co-Laplacian SVM and Co-Laplacian RLS re-
spectively.

The solutions are obtained by training a standard
SVM or RLS using the following modified kernel func-
tion:
K (2 20y = KO () 500y —
kT (I + MG®) " Mk,

x(s

where G®) is the gram matrix of the ker-
nel function K (S); k. denotes the vec-

T
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M = X5 L. See (Sindhwani, Niyogi & Belkin, 2005)
Y

A
for a derivation of this kernel.

When a = 0 for view 1 or « = 1 for view 2, the
multi-view aspect is ignored and the pair consists of
Laplacian SVM or Laplacian RLS in each view. When
vr = 0, the unlabeled data is ignored and the pair
consists of standard SVM or RLS classifiers.

Figure 2. Two-Moons-Two-Lines :
and Co-RLS
View 1: RLS (2 labeled examples)

RLS, Co-trained RLS

View 2: RLS (2 labeled examples)

The idea of combining graph regularizers and its con-
nection to co-training has been briefly discussed in
(Joachims, 2003) in the context of applying spec-
tral graph transduction (SGT) in multi-view settings.
However, unlike co-training, SGT does not produce
classifiers defined everywhere in X", X () so that pre-
dictions cannot be made on novel test points. By op-
timizing in reproducing kernel Hilbert spaces defined
everywhere, Co-Laplacian SVM and RLS can also ex-
tend beyond the unlabeled examples.

4. Experiments

We performed experiments on a toy multi-view dataset
and a hypertext document categorization task.

Two-Moons-Two-Lines Toy Example

Figure 2 and Figure 3 demonstrate Co-Regularization
ideas on a toy dataset in which objects in two classes
appear as two moons in one view and two oriented lines
in another. Class conditional view independence is
enforced by randomly associating points on one moon
with points on one line, somewhat like the News 2 x 2
dataset in (Nigam & Ghani 2000). One example is
labeled from each class and shown as the large colored
diamond and circle; the other examples are unlabeled.
We chose a Gaussian kernel for the two moons view
and a linear kernel for the two lines view.

In the top panel of Figure 2, we see that a super-
vised Regularized least squares classifier is unable to



Figure 3. Two-Moons-Two-Lines :
Co-Laplacian SVM

View 1: LapSVM
a

Laplacian SVM and

View 2: LapSVM

Noisy View 1: LapSVM
(Error rate : 144/200)

View 1: Co-Regularized LapSVM (joint graph)
(Error rate : 18/200)
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produce reasonable classifiers with only 2 labeled ex-
amples. In the middle panel, we add two more la-
beled examples based on the most confident predic-
tions (which are actually incorrect) of the supervised
classifiers on the unlabeled data. The middle panel
shows the classifiers obtained after 1 iteration of stan-
dard co-training with the boosted set of 4 labeled ex-
amples. Since greedy co-training does not revise con-
jectured labels, subsequent training fails to yield good
classifiers in either view. By contrast, Co-Regularized
Least squares classifiers, shown in panel 3, effectively
use the unlabeled data in two views.

In the top panel of Figure 3, we show single-view semi-
supervised learning with Laplacian SVMs in the two
views. We then add noise to the two-moons view so
that the two clusters are merged. This is shown in the
bottom left panel. In this case, the unlabeled data fails
to provide any structure for Laplacian SVM to exploit.
However, when the joint graph laplacian is used, the
rich structure in the two-lines view can be used to
recover good decision boundaries in the two moons
view. The bottom right panel shows the boundaries
constructed by Co-Laplacian SVM.

Hypertext Categorization

We considered the WebKB hypertext categorization
task studied in (Blum & Mitchell, 1998; Joachims,
2003; Nigam & Ghani 2000). There are 1051 web doc-
uments belonging to two classes: course or non-course
from four universities. Only 12 examples are labeled.
The two views are the textual content of a webpage
(which we will call page representation) and the an-
chortext on links on other webpages pointing to the
webpage (link representation).

The data was preprocessed into 3000 features for the
page-view and 1840 features for the link view using the
Rainbow software (McAllum, 1996). We used linear
kernels for both views. We also considered a page+link
representation with concatenated features.

The performance of several methods as measured
by mean precision-recall breakeven point (PRBEP)
is tabulated in Table 1. These methods are (a)
RLS, SVM on fully labeled data sets and with 12
randomly chosen labeled examples; (b) single-view
semi-supervised methods: SGT (Joachims, 2003),
TSVM (Joachims, 1999), Laplacian SVM, Lapla-
cian RLS (Belkin, Niyogi & Sindhwani, 2004; Sind-
hwani, Niyogi & Belkin, 2005); (¢) multi-view semi-
supervised methods: Co-RLS, Co-trained RLS, Co-
trained SVM, Co-LapRLS and Co-LapSVM. In Table
1, Co-LapRLS1, Co-LapSVM1 use o = 0.5 to com-
bine graph Laplacians in page and link views; and Co-
LapRLS2, Co-LapSVM2 use the mean graph Lapla-
cian over page, link and page+link views, to bias classi-
fiers in each view. The performance of supervised clas-
sifiers with full labels (RLS (full) and SVM (full)) is
the mean PRBEP for 10-fold cross-validation. For all
other methods, we average over random choices of 12
labeled examples (making sure that each class is sam-
pled at least once) and measure the mean PRBEP eval-
uated over the remaining 1039 examples. We avoided
the model selection issue due to the small size of the la-
beled set and chose best parameters over a small range
of values.

The results in table 1 suggest that Co-LapSVM and
Co-LapRLS are able to effectively use unlabeled ex-
amples in the two views. The link and page classifiers
using 12 labeled examples, 1039 unlabeled examples
and multi-view regularizers match the performance of
supervised classifiers with access to all the labels. We
also see that Co-RLS outperforms Co-trained RLS. In
Table 2, we report the performance of Co-Laplacian
SVM (using the mean graph Laplacian over the page,
link and page+link views) in classifying unlabeled and
test web-documents of four universities. The high cor-
relation between performance on unlabeled and unseen
test examples suggests that the method provides good
extension outside the training set.

5. Conclusion

We have proposed extensions of regularization algo-
rithms in a setting where unlabeled examples are eas-
ily available in multiple views. The algorithms provide
natural extensions for SVM and RLS in such settings.
We plan to further investigate the properties of these
algorithms and benchmark them on real world tasks.



Table 1. Mean precision-recall breakeven points over unla-
beled documents for a hypertext classification task.

View — link | page | page+
Classifier | link
RLS (full) 94.4 | 94.0 97.8
SVM (full) 93.7 | 935 99.0
RLS (12) 72.0 | 71.6 78.3
SVM (12) 74.4 | 77.8 84.4

SGT 78.0 | 89.3 93.4

TSVM 85.5 | 91.4 92.2

LapRLS 80.8 | 89.0 93.1
LapSVM 81.9 | 89.5 93.6

Co-trained RLS | 74.8 | 80.2 -

Co-RLS 80.8 | 90.1

Co-LapRLS1 93.1 | 90.8 90.4
Co-LapRLS2 94.4 | 92.0 93.6
Co-trained SVM | 88.3 | 88.7 -
Co-LapSVM1 93.2 | 93.2 90.8
Co-LapSVM2 94.3 | 93.3 94.2

Table 2. Mean precision-recall breakeven points over test
documents and over unlabeled documents (test , unla-
beled)

University — | page+link page link
View |
Cornell 91.6,90.9 | 88.9,88.8 | 88.2,88.7
Texas 94.8 ,95.5 | 91.6 ,924 | 90.9 , 93.5
Washington | 94.7 ,94.9 | 94.0,93.9 | 93.7, 924
Wisconsin 92.0,91.4 | 87.6 ,86.6 | 86.1,84.5
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