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ABSTRACT
Streaming user-generated content in the form of blogs, microblogs,
forums, and multimedia sharing sites, provides a rich source of data
from which invaluable information and insights maybe gleaned.
Given the vast volume of such social media data being continually
generated, one of the challenges is to automatically tease apart the
emerging topics of discussion from the constant background chat-
ter. Such emerging topics can be identified by the appearance of
multiple posts on a unique subject matter, which is distinct from
previous online discourse. We address the problem of identify-
ing emerging topics through the use of dictionary learning. We
propose a two stage approach respectively based on detection and
clustering of novel user-generated content. We derive a scalable
approach by using the alternating directions method to solve the
resulting optimization problems. Empirical results show that our
proposed approach is more effective than several baselines in de-
tecting emerging topics in traditional news story and newsgroup
data. We also demonstrate the practical application to social media
analysis, based on a study on streaming data from Twitter.

1. INTRODUCTION
The wide-spread popularity of social media, such as blogs and

Twitter, has made it the focal point of online discussion and break-
ing news. Given the speed at which such user-generated content
is produced, news flashes often occur on social media before they
appear in traditional media outlets. Twitter, in particular, has been
at the forefront of updates on disasters, such as earthquakes, on the
2009 post-election protests in Iran, and even on news of celebrity
deaths [29]. Identifying such trending topics is of great interest be-
yond just reporting news, with applications to marketing, disease
control, national security and many more. The business case for
marketing and PR is particularly compelling, given that 19% of
all tweets [16] and 32% of blog posts [26] talk about products or
brands. Businesses need to be aware of what consumers, in gen-
eral, are saying about their products; especially since any emerging
negative information or opinions are best dealt with promptly.
Motivated by this need, we focus on the task of automatically
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detecting emerging topics, hot topics, or buzz from streams of doc-
uments/posts. For a subject to be considered an emerging topic, it
must have support, in that it must appear from multiple sources;
and it must be novel, in that it should be different from topics that
have been, or are already, popular and well-known. Several cur-
rent techniques that can be applied to address this problem, do not
adequately meet both these criteria.
One possible approach to identifying emerging topics in docu-

ment streams is to take all new posts and identify sets of posts that
are similar. Extensive research in the area of document cluster-
ing and topic modeling with Latent Dirichlet Allocation [5], Prob-
abilistic Latent Semantic Analysis [15], and Non-negative Matrix
Factorizations [20] can be brought to bear here. Although cluster-
ing and topic modeling techniques (including, the dynamic ones)
can find sets of posts expressing cohesive patterns of discussion,
they are not guaranteed to identify clusters that are also novel or
informative compared to previously appearing topics.
An alternative approach is to use techniques that have been de-

veloped for First Story Detection (FSD) [2], in the context of Topic
Detection and Tracking (TDT) for traditional news streams. While
seemingly related, FSD is only focused on detecting when a doc-
ument discusses a previously unseen event. While first story de-
tection by itself is very valuable for broadcast news, given the low
signal-to-noise ratio in social media, it is less effective. In the space
of social media, many posts that may be considered as “first stories”
solely because they are very different from previous posts, may ac-
tually be of little value, e.g., the fact that intlevg on Twitter is eating
“honey roasted peanuts for lunch”, may be of little interest to the
population at large.
For successful emerging topic detection, we need to identify sev-

eral recent posts that are both similar to each other, and are dissim-
ilar to previous posts. In this paper, we propose an approach based
on sparse coding, in which data vectors are modeled as sparse lin-
ear combinations of basis elements. A stream of documents (where
each document is modeled a vector x ∈ R

m) can be used to learn
a dictionary (A ∈ R

m×k) of k atoms, such that the documents
can be approximately represented by a linear combination of a few
atoms. If a new document cannot be represented with low error as
a sparse linear combination of these atoms, it is a good indicator of
novelty of the document. Novel document, thus identified, are used
to learn a new dictionary of novel topics. This new dictionary is
then used to cluster similar novel posts together, which we identify
as the emerging topic clusters.
We validated our approach on several datasets from broadcast

news, news groups, and Twitter. Empirical results show that our
approach is more effective at detecting emerging topics in terms of
precision and recall, than an approach based on first story detec-



tion followed by clustering of the first stories detected, and other
variations. This paper makes the following main contributions:

(1) We formulate the task of detecting novel signals in streaming
datasets as a sparse signal representation problem. A signal is
represented with a sparse code over an existing dictionary along
with a sparse error term. A novel signal is detected based on
the lack of sparsity in such a representation. While our main
application is emerging topic detection on streaming text, our
methodology applies more broadly to other domains.

(2) Our objective function is a combination of the �1-norms of a
sparse error (robust reconstruction) and a sparse code, i.e., ‖e‖1+
λ‖x‖1 (for the signal y = Ax+e), which appears well suited for
sparse high-dimensional datasets such as those that arise in text
applications. Additionally, we have non-negativity constraints
on the sparse code (x) and dictionary (A), to maintain inter-
pretability. Such a natural formulation combining sparsity, ro-
bustness, and non-negativity appears novel and highly appropri-
ate for the task.

(3) Most algorithms for dictionary learning are iterative batch proce-
dures, that operate on the entire training set, which is not feasible
for very large and dynamic data. We present an online algorithm
which computes the sparse coding for each data point only once,
instead of an iterative batch update scheme. As a result, our ap-
proach is very scalable and well-suited for streaming data, such
as from social media.

(4) We use a new practical alternating direction method (ADM) to
solve various optimization problems appearing in our formula-
tion, that may be of independent interest. ADM has recently
gathered significant attention in the Machine Learning commu-
nity due to its wide applicability to a range of learning problems
with complex objective functions [6].

(5) We introduce a new dictionary learning based text clustering
algorithm which, in our setting, outperforms the widely used
Spherical K-Means [12] algorithm for clustering novel docu-
ments. The new algorithm is more generally applicable, and
inherits the scalability of dictionary learning methods.

Notation. We use [n] to denote the set {1, . . . , n}. Vectors are
always column vectors and are denoted by boldface letters. For
a scalar r ∈ R, let sign(r) denote the sign of r and soft(r, T ) =
sign(r) ·max{|r|−T, 0}. The operator soft is extended to a matrix
by applying it to every entry in the matrix. For arbitrary real matri-
ces the standard inner product is defined as 〈A,B〉 = Tr(A�B),
and the (squared) Frobenius matrix norm ‖A‖2fro = 〈A,A〉 is the
sum of all squared entries of the matrix. We use s.t. as an abbrevi-
ation for subject to.

2. BACKGROUNDWORK
Sparse error recovery has found success in applications such

as image and speech processing [7], computer vision and pattern
recognition [23]. One of most successful (and relevant to this pa-
per) applications is in robust face recognition [36, 35]. It is known
that a well-aligned frontal face image under different lighting and
expression lies close to a special low-dimensional linear subspace
spanned by the training samples from the same subject [4]. This ob-
servation has led to face recognition to be cast as a sparse represen-
tation problem where the objective is to recover a high-dimensional
sparse signal x ∈ R

k from a highly compressed linear measure-
ment y = Ax + e ∈ R

m (where e is an unknown error vec-
tor) [35]. In recent work, Wright et al. [36] proposed to estimate

w = [x, e] jointly as the sparsest solution to the extended equa-
tion: minw ‖w‖1 s.t. y = [A, I]w, where I is the identity matrix.
They show this formulation performs exceedingly well for robust
face recognition. For example, they show that this �1-minimization
enables almost perfect recognition even if more than 60% pixels of
the query image are severely corrupted. In a later paper, Wright and
Ma [35] provided theoretical justification for this �1-minimization
formulation. We use a similar formulation to construct a sparse
representation (see Section 4). One crucial difference between our
approach and that advocated by Wright et al. is that our matrix A
does not contain all the documents, but is a compact representative
dictionary of the documents seen before. This makes our approach
more scalable.
Dictionary learning falls into a general category of techniques

known as matrix factorization. In this paper, we additionally en-
force non-negativity constraint on the factor matrices and such fac-
torizations have been widely studied as non-negative matrix fac-
torization (NMF) [20]. Most NMF formulations deal with squared
loss [20, 22] . Several papers have considered �1-regularized matrix
factorizations with applications to topic models in text, e.g., [17,
39] but with an �2-loss function. Similar to our loss function (6),
Ke and Kanade [19] consider an �1-loss function for non-negative
matrix factorization, but do not impose sparsity in the factors. In
their paper, Ke and Kanade [19] gave a simple alternative convex
programming approach for solving non-negative matrix factoriza-
tion with �1-loss. Another framework with closely related goals is
that of Robust PCA [8] where a decomposition of a matrix is sought
in terms of a low-rank component with small nuclear norm and
sparse errors. However, the repeated need to solve linear/quadratic
programs or SVD in these approaches not scalable to large ma-
trices. Our use of the alternating directions method allows us to
scale-up to large matrices that are typically encountered in the text
domain. For a review of ADMs and their suitability to a variety
of large scale learning problems, we point the reader to [6]. To
the best of our knowledge, our approach is the first to propose a
scalable algorithm for �1-regularized dictionary learning with ro-
bust �1-reconstruction error with an application in temporal topic
analysis of streaming documents.

3. TASK DEFINITION
In order to represent documents in our data stream, we will use

the conventional vector space model withTF-IDF (Term Frequency-
Inverse Document Frequency) term-weighting [24]. Additionally,
each document has a timestamp that indicates when the document
arrives. The timestamp could be at the granularity of our liking,
e.g., it could be the day or the exact time the document arrives. As
new documents come in and new terms are identified, our vocab-
ulary set increases, but for simplicity, we are going to work with
a global vocabulary space containing m terms that is independent
of t. The extension to the case where the vocabulary set increases
with t is quite simple, and just requires adjusting the size of the
matrices by zero-padding.
Let {Pt ∈ R

m×nt , t = 1, 2, . . . } denote a sequence of stream-
ing matrices, where Pt represents the sparse term-document matrix
whose unit �1-normalized columns are the documents with times-
tamp t and nt is the number of documents with timestamp t. Anal-
ogous to Pt, we also define P≤t which is constructed by using all
documents whose timestamp is≤ t. Let n≤t be the number of doc-
uments with timestamp ≤ t, then P≤t ∈ R

m×n≤t . Informally, the
goal of emerging topic detection is to identify sets of documents in
Pt that are similar to each other and are dissimilar to documents
in P≤t−1.
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Figure 1: Schematic of our framework: At each timestep, we
solve a sparse coding/dictionary learning problem with �1 re-
construction error and �1 regularization. The reconstruction
error is used to identify novel documents which are again clus-
tered using our framework to report emerging topics.

4. OUR FORMULATION
We split the task of emerging topic detection into two sub-tasks:

(1) Identifying the novel documents (Nvlt) from Pt (novel docu-
ments are those that belong to any of the emerging topics at time t),
and (2) Clustering the novel documents. We use dictionary learning
to solve both these sub-tasks (see Figure 1).

4.1 Identifying Novel Documents
Let At−1 ∈ R

m×k represent the dictionary matrix after time
t−1; where dictionary At−1 is a compact summary representation
of all the documents in P≤t−1. Each column of At−1 is called a
basis vector or atom. The exact construction of the dictionary is
described later, but ideally we want the dictionary to have a set of
representative atoms for each of the old topics. With such a repre-
sentative dictionary, documents from old topics can be represented
as a linear combination of the atoms corresponding to that topic.
Given a new document vector y with timestamp t, we see if y

could be represented as a sparse linear combination of the columns
of At−1. The sparsest representation is the solution of

min
x
‖x‖0 s.t. y = At−1x,x ≥ 0, (1)

where ‖ · ‖0 is the �0-norm, counting the non-zero entries of a vec-
tor. However, in the general case, solving (1) is NP-hard and also
hard to approximate [3]. Recently, a series of papers (see [9, 13]
and references therein) have shown that under some favorable con-
ditions one could obtain the solution to (1) by solving the following

min
x
‖x‖1 s.t. y = At−1x,x ≥ 0. (2)

In essence, (2) can be viewed as a convex relaxation of (1). We will
work with the �1-norm based convex relaxation in the sequel.
In most practical situations, (2) is not applicable because it may

not be possible to represent y as At−1x, e.g., if y has new words
which are absent (i.e., have no support) in At−1. In such cases,
one could represent y = At−1x+ e where e is an unknown noise
vector. Normally, if one considers a specific topic over time, typ-
ically a small set of new words get introduced in the discussion,
e.g., if the topic is a sporting event like the Olympics, with time the
discussion shifts to different athletes or events. The error vector e
captures these terms. Since there are few such new words, the vec-
tor e is sparse. However, these terms do get used with much higher
frequency within few documents than one might expect from the
overall statistics of the corpus. So even though e is sparse it has

some large, impulsive values. A natural relaxation to (2) for han-
dling noise is minx ‖x‖1 s.t. ‖y − At−1x‖2 ≤ δ,x ≥ 0. The
above problem (generally without the non-negativity constraint) is
commonly known as the constraint basis pursuit denoising prob-
lem [10] and its variant

min
x
‖y − At−1x‖22 + λ‖x‖1 s.t. x ≥ 0, (3)

is referred to as the unconstrained basis pursuit denoising problem,
also known as the Lasso [31]. Here, δ, λ > 0 are parameters. The
formulation (3) naturally takes into account both the reconstruction
error (with the ‖y − At−1x‖22 term) and the complexity of the
sparse decomposition (with the ‖x‖1 term).
In the presence of isotopic Gaussian noise the �2-penalty on

e = y − At−1x gives the best approximation of x [36, 37, 38].
However, for text documents (and in most other real scenarios),
the noise vector e rarely satisfies the Gaussian assumption, and
some of its coefficients contain large, impulsive values. In such
scenarios, the �2-penalty of (3) may give an extremely bad ap-
proximation of x [37, 27]. However, in such real-world scenarios
recent results [19, 36, 38, 35] have shown that imposing an �1-
reconstruction error gives a more robust and better approximation
of x. We refer readers to these papers to get a more detailed exposi-
tion of the advantages of �1 over �2-reconstruction error. The basic
intuition is that the ability of �1-penalty to recover the true solution
x is independent of the magnitude of the e, and depends only on
the signs of e and the relative geometry of the column space of A
and the unit �1 ball [36].
We use the following �1-formulation to recover x

min
x
‖y − At−1x‖1 + λ‖x‖1 s.t. x ≥ 0. (4)

It is well-known that unlike (3) where squared �2-norm is used on
the error, the �1-reconstruction error makes (4) an exact penalty
method in the sense that it reduces to (2) when λ > 0 is less than
some threshold [38]. Additionally, Yang et al. [38] claim that even
without impulsive noise the �1-reconstruction error does not harm
the solution quality as long as the data does not contain a large
amount of Gaussian noise.
Given a new document y with timestamp of t and a dictionary

At−1, we solve (4) to determine whether y is novel (with respect
to dictionary At−1) or not. If the objective value of (4) is “small,”
then y is well-reconstructed by a linear combination of some ba-
sis vectors in At−1. We mark such documents as non-novel and
discard them. Now, if the objective value is “large,” then y has no
good reconstruction among the basis vectors of the previous topics,
thus suggesting novelty of y. We add such documents to the set
Nvlt. Note that all documents are normalized to unit �1 length, and
hence the objective values are in the same scale. The performance
of this algorithm depends on the “quality” of the dictionary. We
now describe our dictionary learning formulation.

4.2 Dictionary Learning
For simplicity of explanation, we assume that the dictionary is

of fixed size Rm×k (independent of t). Classic dictionary learn-
ing techniques [28, 1, 21] consider a finite training set of signals
S = [s1, . . . , sn] ∈ R

m×n and optimize the empirical cost func-
tion

∑n
i=1 l(si, A), where A ∈ R

m×k is the dictionary and l(·, ·)
is a loss function such that l(s, A) should be small ifA is “good” at
representing the signal s in a sparse fashion. The value k is referred
to as the size of the dictionary. A typical choice of the loss function
is the Lasso-style objective

l(s, A) = min
x
‖s− Ax‖22 + λ‖x‖1. (5)



However, as we mentioned above in the absence of Gaussian noise
using �1-loss on the error improves the estimation, therefore, we
use the following loss function l(s, A) = minx ‖s − Ax‖1 +
λ‖x‖1. Additionally, we want dictionary A and x’s to contain
non-negative entries. Therefore, the problem of dictionary learn-
ing becomes

min
xi,A

n∑
i=1

‖si − Axi‖1 + λ‖xi‖1 s.t. A ≥ 0,xi ≥ 0∀i ∈ [n].

In our setting at time t, we want to update the dictionary so that
it forms a compact summary representation of all the documents in
P≤t. Let P≤t = [p1, . . . ,pn≤t

] ∈ R
m×n≤t . We learn a dictio-

nary for time t by minimizing

min
xi,A

n≤t∑
i=1

‖pi − Axi‖1 + λ‖xi‖1 s.t. A ≥ 0,xi ≥ 0 ∀i ∈ [n≤t].

Equivalently this could be written as minimizing the following func-
tion over (X,A):

f(X,A) = ‖P≤t − AX‖1 + λ‖X‖1 s.t. A,X ≥ 0. (6)

Since we are factorizing P≤t into two non-negative matrices,
Equation (6) (without the λ‖X‖1 term) is referred to as �1-loss
non-negative factorization problem [20]. The optimization prob-
lem (6) is in general non-convex. But if one of the variables, either
A or X is known, the objective function with respect to the other
variable becomes a convex function (in fact, a linear function) and
the global solution to (6) can be found. This iterative alternative
minimization is the core idea behind most algorithms for dictionary
learning [28, 1, 21]. However, these algorithms access the whole of
the dataset in each iteration, and therefore, these algorithms cannot
efficiently deal with large datasets. To overcome this problem, we
use an online version of dictionary learning, where we update only
A and use X obtained from previous stages of the algorithm (see
Section 5).

4.3 Novel Documents to Emerging Topics
We now describe our procedure for going from novel documents

to emerging topics. The idea is to again use dictionary learning.
Given as input a set of (novel) documents and the number of topics
(k1) to be generated, we use a suitable modification of (6) to do
detect emerging topics. The idea is as follows: If Nvlt represents
the set of novel documents, we learn a dictionary with k1 atoms,
where each atom corresponds to an emerging topic. In other words,
we minimize the following function over (R,S):

f(R,S) = ‖Nvlt −RS‖1 + λ‖S‖1 s.t. R,S ≥ 0, (7)

where R ∈ R
m×k1 is the dictionary matrix of term-topic associ-

ation and S ∈ R
k1×|Nvlt| is the matrix of topic-document associ-

ation. The distribution of terms in each column of R is the latent
representation of the k1 emerging topics in the data. In order to
present these topics in a meaningful way to users, we represent
each topic by the most relevant documents to the topic. We do this
by assigning each document to the atom in which it has the most
dominant representation as given by the matrix S. This gives a
clustering of novel documents into emerging topics.

5. OUR ALGORITHM
We present in this section our algorithm for detecting emerg-

ing topics. Our main procedure is summarized in Algorithm NVL-
CLUST. The algorithm alternates between a “detection stage” and
a “dictionary learning stage.” The detection stage at time t gets as

input the dictionary At−1 and Pt, and for each document pj in Pt

computes the best representation of pj in terms of At−1 by solv-
ing (4) (where y is replaced by pj ). It is quite easy to transform (4)
into a linear program. However, in our experiments the linear pro-
gramming approach turned out to be quite slow (even when using
commercial solvers like CPLEX). To speedup our algorithm, we
use the alternating directions method (also known in the literature
as alternating directions method of multipliers) [11, 38]. We ex-
plain this approach in Section 6. We classify a document pj as
novel if the objective value of (4) is above some chosen threshold
ζ. Let Nvlt ⊆ Pt be the set of document that are marked as novel
at time t. The set of novel documents is then passed as input to Al-
gorithm DICTCLUST which does clustering of these documents as
explained in Section 4.3. Since, the size of Nvlt is typically small,
we solve it using a simple iterative batch procedure, alternatively
fixing R,S and updating the other using the method of alternating
directions.
We perform the dictionary learning stage in an online fashion.

Online dictionary learning was recently introduced by Mairal et
al. [22] who showed that it provides a scalable approach for han-
dling large dynamic datasets. They consider an �2-loss function
and show that their online algorithm converges to the minimum ob-
jective value in the stochastic case. Our online dictionary learning
framework has similar structure to that of Mairal et al., although
we focus on �1-loss. In the online setting, instead of (6), we update
the dictionary by minimizing the following function over A:

fX(A) = ‖P≤t − AX≤t‖1 + λ‖X≤t‖1 s.t. A ≥ 0, (8)

where X≤t = [x1, . . . ,xn≤t
] are computed during the previous

detection stages. Notice that minA≥0 fX(A) is an upper bound on
minA,X≥0 f(X,A) (as we only optimize overA in fX(A)). How-
ever, unlike f(X,A) (which is not convex), minimizing fX(A) is a
convex program (in fact, it can be re-cast as a linear program). For
efficiency purposes, we use the method of alternating directions to
compute fX(A) (see Section 6). The matrix A that minimizes the
right hand side of (8) is the new dictionary At.

Remark. Our framework allows for several variations. By default,
the optimization of A is initialized using At−1 and therefore the
number of topics tracked by the system is static. Alternatively, the
set of emerging topics as discovered by the procedure described in
Section 4.3 may also be explicitly injected as columns (in addition
to At−1) in the initialization of A. In this case, the number of top-
ics tracked steadily grows. A guided process may also be possible
where a user scans the list of emerging topics and selectively in-
troduces topics of interest in the dictionary. For simplicity, in this
paper we use the default variation.

6. ALTERNATINGDIRECTIONSMETHOD
To speedup the algorithms NVLCLUST and DICTCLUST, we use

the method of alternating directions to solve the various optimiza-
tion problems. The reader is referred to [38, 6] and references
therein for details and historical development of the alternating di-
rection method (ADM). We start with a brief review of the gen-
eral framework of ADM from [38]. Let p(x) : R

a → R and
q(y) : R

b → R be convex functions, F ∈ R
c×a, G ∈ R

c×b, and
z ∈ R

c. Consider the following optimization problem

min
x,y

p(x) + q(y) s.t. Fx+Gy = z, (9)

where the variable vectors x and y are separate in the objective,
and coupled only in the constraint. The augmented Lagrangian for



ADM EQUATIONS FOR SOLVING (10)

Input: At−1 ∈ R
m×k, pj ∈ R

m, λ, β, τ, γ > 0

1. x(1) ← 0, e(1) ← 0, ρ(1) ← 0

2. for i = 1, 2, . . . ,convergence do
a) e(i+1) ← soft(pj − At−1x(i) + ρ(i)/β, 1/β)

b) g(i) ← A�
t−1(At−1x(i)+e(i+1)−pj−ρ(i)/β)

c) x(i+1) ← max
{
x(i) − τg(i) − (λτ )/β, 0

}
d) ρ(i+1) ← ρ(i)+γβ(pj−At−1x(i+1)−e(i+1))

ADM EQUATIONS FOR SOLVING (8)

Input: At−1 ∈ R
m×k, P≤t ∈ R

m×n≤t ,X≤t ∈ R
m×n≤t , β, τ, γ > 0

1. A(1) ← At−1, Γ(1) ← P≤t − At−1X≤t, Δ(1) ← 0

2. for i = 1, 2, . . . ,convergence do
a) Γ(i+1) ← soft(P≤t − A(i)X≤t +Δ(i)/β, 1/β)

b) G(i) ← (A(i)X≤t + Γ(i+1) − P≤t −Δ(i)/β)X
�
≤t

c) A(i+1) ← max{A(i) − τG(i), 0}
d)Δ(i+1) ← Δ(i) + γβ(P≤t − A(i+1)X≤t − Γ(i+1))

Figure 2: ADM equations for detection and dictionary learning stages. The operator soft along with other notations are defined at
the end of the Section 1.

ALGORITHM NVLCLUST: NOVEL TOPIC CLUSTERING

Input: Pt = [p1, . . . ,pnt ] ∈ R
m×nt , At−1 ∈ R

m×k , λ, ζ ∈ R

Detection stage:

1. Nvlt ← ∅
2. for each pj ∈ Pt do

a) xj = argminx≥0‖pj − At−1x‖1 + λ‖x‖1
b) if ‖pj −At−1xj‖1 + λ‖xj‖1 > ζ then

Nvlt = Nvlt ∪ {pj}
3. Invoke Algorithm DICTCLUST on Nvlt

Dictionary Learning stage:

4. X≤t ← [X≤t−1 |x1, . . . ,xnt ]

5. P≤t ← [P≤t−1 |p1, . . . ,pnt ]

6. At = argminA≥0‖P≤t − AX≤t‖1 + λ‖X≤t‖1

ALGORITHM DICTCLUST: DICTIONARY-BASED CLUSTERING

Input: Matrix of documents Nvlt, λ ∈ R, k1 ∈ R

1. Rt, St = argminR≥0,S≥0‖Nvlt −RS‖1 + λ‖S‖1

2. let St = [s1, . . . , s|Nvlt|] where each sj ∈ R
k1

3. for each document pj ∈ Nvlt do
a) l = argmaxj{sj}
b) assign document pj to topic l

the above problem is given by

L(x,y, ρ) = p(x)+q(y)+ρ�(z−Fx−Gy)+
β

2
‖z− Fx−Gy‖22 ,

where ρ ∈ R
c is the Lagrangian multiplier and β > 0 is a penalty

parameter.
ADM utilizes the separability form of (9) and replaces the joint

minimization over x and y with two simpler problems. The ADM
first minimizes L over x, then over y, and then applies a proximal
minimization step with respect to the Lagrange multiplier ρ. In the
ith iteration of the ADM procedure, given (x(i),y(i), ρ(i))

1, we

1The subscript (i) denotes the ith iteration of the ADM procedure.

obtain (x(i+1),y(i+1), ρ(i+1)) as follows
⎧⎪⎨
⎪⎩
x(i+1) ← argminxL(x,y(i), ρ(i)),

y(i+1) ← argminyL(x(i+1),y, ρ(i)),

ρ(i+1) ← ρ(i) + γβ(z− Fx(i+1) −Gy(i+1)).

Here, γ > 0 is a constant. The ADM procedure has been proved
to converge to the global optimal solution under quite broad condi-
tions [11]. We now apply ADM to the various optimization prob-
lems encountered in Algorithms NVLCLUST and DICTCLUST. The
ADM procedure stops when the relative change in the objective
function is less than a given constant. In practice few iterations are
needed to reach good results. Due to lack of space all proofs are
omitted and can be found in the full version of the paper.

ADM for Detection Stage. Let R+ be the set of positive real num-
bers. In the detection stage of Algorithm NVLCLUST for each doc-
ument pj , we solve the following program

min
x∈Rk

‖pj − At−1x‖1 + λ‖x‖1 s.t. x ≥ 0. (10)

This can be written equivalently as

min
x∈Rk

+,e∈Rm
‖e‖1 + λ‖x‖1 s.t. e = pj − At−1x. (11)

Then the augmented Lagrangian form of (11) is

L(x, e, ρ) = min
x∈Rk

+,e∈Rm
‖e‖1 + λ‖x‖1

+ ρ�(pj − At−1x− e) + (β/2) ‖pj − At−1x− e‖22 . (12)

We now apply ADM to the above Lagrangian. Let us assume that
we have (x(i), e(i), ρ(i)), we construct (x(i+1), e(i+1), ρ(i+1)) as
follows. First, for a fixed x(i) and ρ(i), we update e by solving

min
e
‖e‖1 + ρ�(i)(pj − At−1x(i) − e) +

β

2
‖pj − At−1x(i) − e‖22.

LEMMA 6.1. The minimum value of the above optimization is
attained by setting e = soft(pj − At−1x(i) + ρ(i)/β, 1/β).

The above lemma gives the derivation for e(i+1). Now, for a fixed
e(i+1) and ρ(i) a simple manipulation shows that we can obtain x
that minimizes (12) by solving the following

min
x∈Rk

+

λ‖x‖1 + (β/2)‖pj − At−1x− e(i+1) + ρ(i)/β‖22. (13)

However, instead of solving (13) exactly, we approximate it by

min
x∈Rk

+

λ‖x‖1 + β
(
g�
(i)(x− x(i)) + (1/2τ )‖x− x(i)‖22

)
, (14)



where τ > 0 is a proximal parameter and

g(i) =
∂

∂x
‖pj − At−1x− e(i+1) + ρ(i)/β‖22 at x = x(i)

= A�
t−1(At−1x(i) + e(i+1) − pj − ρ(i)/β).

The above approach belongs to the class of proximal gradient meth-
ods in optimization [33, 38]. We use it in the context of a composite
function with a smooth and a non-smooth part, where the gradient
is computed only based on the smooth part [33].

LEMMA 6.2. The minimum value of (14) is attained by setting
x = max{x(i) − τg(i) − (λτ )/β, 0}.

The above lemma gives the derivation for x(i+1). Now given fixed
x(i+1) and e(i+1), we update multiplier ρ as ρ(i+1) = ρ(i) +
γβ(pj −At−1x(i+1)−e(i+1)). The update equations are summa-
rized in Figure 2. The following theorem shows the convergence of
the ADM.

THEOREM 6.3. Let τ, γ > 0 satisfy τλmax(A)+γ < 2, where
λmax(A) is the maximum singular value ofA. For any fixed β > 0,
the sequence {(e(i),x(i), ρ(i))} generated by Figure 2 from any
starting {(e(1),x(1), ρ(1))} converges to {(ẽ, x̃, ρ̃)} where ẽ, x̃ is
the optimum solution to (11).

ADM for Dictionary Learning Stage. In the dictionary learning
stage, we solve (8) which can be rewritten as

min
A,Γ
‖Γ‖1 + λ‖X≤t‖1 s.t. Γ = P≤t − AX≤t, A ≥ 0.

Since ‖X≤t‖1 is a constant term in the objective, we can ignore
that term and look at the following optimization problem

min
A,Γ
‖Γ‖1 s.t. Γ = P≤t − AX≤t, A ≥ 0. (15)

The augmented Lagrangian form of (15) is

L(A,Γ,Δ) = min
A∈R

m×k
+ ,Γ∈Rm×n

‖Γ‖1 (16)

+ 〈Δ, P≤t − AX≤t − Γ〉+ (β/2)‖P≤t −AX≤t − Γ‖2fro,

where Δ ∈ R
m×n is a multiplier and β > 0 is a penalty parame-

ter. The ADM equations for this stage are a generalization (matrix
version) of the ADM equations derived for the detection stage. Fig-
ure 2 summarizes these equations. We useAt−1 as warm restart for
computing At. Similar to Theorem 6.3 one can also show the con-
vergence of these ADM equations.

ADM for Algorithm DICTCLUST.We now derive the ADM equa-
tions for solving (7). We solve (7) by doing an alternative mini-
mization over R and S.

R(j) = argminR≥0‖Nvlt −RS(j−1)‖1 + λ‖S(j−1)‖1, (17)

S(j) = argminS≥0‖Nvlt −R(j)S‖1 + λ‖S‖1. (18)

We use ADM to solve both (17) and (18). The derivation of the
ADM equations are quite similar to that done for detection and
dictionary learning stages, so we summarize the results in Figure 3.

Remark about Parallelization. The optimization problems en-
countered in detection stage, dictionary learning stage, and Algo-
rithm DICTCLUST can all be trivially parallelized. For detection
stage, we could invoke ADM for each pj ∈ Pt in parallel. For, the
dictionary learning stage, we can rewrite the ‖P≤t − AX≤t‖1 as∑m

i=1 ‖P≤t(i) − A(i)X≤t‖1 where P≤t(i) and A(i) are the ith
rows in P≤t and A, respectively. Since the terms in the summa-
tion are independent of each other, we can solve them in parallel

using a modification of the ADM equations used for the detection
stage. The right hand side of Figure 2 is a matrix version of this
parallel optimization over rows of A. A similar idea also works for
alternative minimization used in Algorithm DICTCLUST.

7. EMPIRICAL EVALUATION
In this section, we first empirically evaluate our approach on

publicly-available labeled datasets from news streams and news-
groups. We then present a study of our approach applied to Twitter
data from a PR campaign.

7.1 Evaluation Metrics
For the purpose of evaluation, we assume that documents in the

corpus have been identified with a set of topics. For simplicity, we
assume that each document is tagged with a single, most dominant
topic that it associates with which we refer to as the true topic for
that document.
We use variations of standard IR measures like pairwise preci-

sion, recall, and F1 score [24]. Given Pt, the set of documents ar-
riving at time t, let TNvlt ⊆ Pt be the set of true novel documents
in Pt (i.e., TNvlt contains documents belonging to true emerging
topic clusters). Let Ct be the set of system generated emerging
topic clusters at time t, and let Tt be the true emerging topic clus-
ters at time t. Note that clusters in Tt are formed over documents
in TNvlt, whereas the clusters in Ct are formed over documents in
Nvlt ⊆ Pt, and TNvlt may not be equal to Nvlt.
We define our evaluation metrics over the novel documents. Pair-

wise precision (Precnvl) is the number of pairs of documents that
are in the same cluster in both Tt and Ct divided by the number
of pairs of documents that are in the same cluster in Ct. Pairwise
recall (Recnvl) is the number of pairs of documents that are in the
same cluster in both Tt and Ct divided by the number of pairs of
documents that are in the same cluster in Tt. Pairwise F1 (F1nvl)
is the harmonic mean of Precnvl and Recnvl. The following ex-
ample illustrates these definitions. Let Pt = {p1, p2, . . . , p9},
TNvlt = {p3, p4, p5}, and Nvlt = {p3, p4, p5, p6, p7}. Let Tt =
{(p3, p4, p5)} (i.e., Tt contains one cluster made up of p3, p4, p5),
and Ct = {(p3, p4, p6), (p5, p7)}. Then,

Precnvl =
|{(p3, p4)}|

|{(p3, p4), (p3, p6), (p4, p6), (p5, p7)}|
=

1

4

Recnvl =
|{(p3, p4)}|

|{(p3, p4), (p3, p5), (p4, p5)}|
=

1

3

7.2 Baseline Approaches
We compare the performance of our algorithm against three al-

ternative approaches we created, which are based on combining
nearest neighbor and K-Means algorithms with dictionary learn-
ing. We describe these baselines below:

NN-KM: To detect novel documents, we use the nearest neigh-
bor approach used by the UMass FSD system [2], which is one of
the best performing system for this task [29]. As in the UMass
system, we use cosine distance as a similarity measure and a TF-
IDF weighted document representation. Every document in Pt

whose cosine distance to its nearest neighbor in P≤t−1 is below
some η is marked as novel. We build on this algorithm to get a
baseline for emerging topic detection, by running aK-Means clus-
tering with cosine distance (a.k.a. SphericalK-Means) on the doc-
uments marked novel. We use Spherical K-Means, as it is a well-
established approach to clustering high-dimensional text data [12].

DICT-KM: The second baseline is a modification of our dictionary
based scheme. We use a dictionary learning approach to detect



ADM EQUATIONS FOR (17)

Input: S(j−1) ∈ R
k1×|Nvlt|, Nvlt ∈ R

m×|Nvlt|, β, τ, γ > 0

1. R(j)

(1) ← R(j−1), Γ(1) ← Nvlt −R(j−1)S(j−1),Δ(1) ← 0

2. for i = 1, 2, . . . ,convergence do
a) Γ(i+1) ← soft(Nvlt −R

(j)

(i)
S(j−1) +Δ(i)/β, 1/β)

b) G(i) ← (R
(j)
(i)S

(j−1) + Γ(i+1) − Nvlt −Δ(i)/β)S
�
(j−1)

c) R(j)

(i+1) ← max{R(j)

(i) − τG(i), 0}
d)Δ(i+1) ← Δ(i) + γβ(Nvlt −R

(j)
(i+1)S

(j−1) − Γ(i+1))

ADM EQUATIONS FOR (18)

Input: R(j) ∈ R
m×k1 , Nvlt ∈ R

m×|Nvlt|, λ, β, τ, γ > 0

1. S(j)
(1) ← S(j−1), Γ(1) ← Nvlt −R(j)S(j−1), Δ(1) ← 0

2. for i = 1, 2, . . . ,convergence do
a) Γ(i+1) ← soft(Nvlt −R(j)S

(j)

(i) +Δ(i)/β, 1/β)

b) G(i) ← R(j)�(R(j)S
(j)
(i) + Γ(i+1) − Nvlt −Δ(i)/β)

c) S(j)

(i+1) ← max{S(j)

(i) − τG(i) − (λτ )/β, 0}
d)Δ(i+1) ← Δ(i) + γβ(Nvlt −R(j)S

(j)
(i+1) − Γ(i+1))

Figure 3: ADM equations for dictionary learning used in Algorithm DICTCLUST.

TDT2 Corpus
Phase No. of old No. of docs No. of new No. of docs F1nvl F1nvl F1nvl F1nvl

clusters from old clusters clusters from new clusters (our) (NN-KM) (DICT-KM) (NN-DICT)
1 18 1390 2 63 0.868 0.694 0.781 0.859
2 20 2256 6 139 0.349 0.324 0.364 0.338
3 26 669 3 45 0.784 0.650 0.730 0.721
4 29 2526 1 140 0.163 0.130 0.146 0.155
Avg. 0.541 0.450 0.505 0.518

20 NewsGroup Corpus
1 6 572 2 783 0.652 0.555 0.630 0.626
2 8 769 2 991 0.586 0.536 0.561 0.519
3 10 964 2 1182 0.655 0.579 0.673 0.654
4 12 1160 2 1366 0.667 0.566 0.620 0.588
5 14 1359 2 1565 0.696 0.576 0.679 0.583
6 16 1552 2 1412 0.731 0.565 0.599 0.681
7 18 1713 2 1714 0.705 0.561 0.598 0.613
Avg. 0.670 0.563 0.623 0.610

Table 1: Results for TDT2 and 20 Newsgroups corpora. We set k = 100. The F1nvl value reported is the maximum F1nvl obtained
for each phase by varying ζ, η in the interval [0, 1]. In Phase 0 of TDT2 corpus 2166 documents from 18 clusters and in Phase 0 of
20 Newsgroups corpus 1718 documents from 6 clusters are used to initialize the dictionary, respectively.

novel documents (this can be done by invoking Algorithm NVL-
CLUST without Step 3) and then run a SphericalK-Means cluster-
ing on these novel documents to create emerging topic clusters.

NN-DICT: The third baseline is also a modification of our dic-
tionary based scheme. We first use the nearest neighbor approach
(explained above) to detect novel documents and then run Algo-
rithm DICTCLUST on these novel documents to create emerging
topic clusters.

We implemented all the algorithms in Matlab. In all our experi-
ments k = 100 and λ = 1/100. We noticed that varying these pa-
rameters does affect the evaluation metrics (e.g., increasing the dic-
tionary sizes leads to better scores, but comes at a cost of increased
running times). However, due to space constraints, we postpone a
discussion of these results to the full version of this paper. The pa-
rameters of ADM are fixed as β = 10, τ = 1/50, and γ = 1.618
(these are chosen in consultation with [38] and Theorem 6.3 for
faster convergence).

7.3 TDT2 and 20 Newsgroups Datasets
We use two standard labeled datasets to evaluate the performance

of our proposed algorithm. We start by describing these datasets
and our experimental setup.
Our first dataset is the NIST topic detection and tracking (TDT2)

corpus2 which consists of news stories in the first half of 1998. For

2http://www.itl.nist.gov/iad/mig/tests/tdt/1998/

our evaluation, we use a set of 9,394 documents represented over
19,528 terms and spread over 27 weeks. These documents are par-
titioned into 30 human-labeled topics. We introduce the documents
from the 27 weeks in 5 different phases. In the zeroth phase, we
introduce all the documents between weeks 1 to 5 and these doc-
uments are used for initializing the dictionary A0. We do so by
running Algorithm NVLCLUST (without the Step 3) in an offline
fashion (as in we alternate between the detection stage and dic-
tionary learning stage for each document). In the first phase, we
introduce all the documents between weeks 6 to 7 and run Algo-
rithm NVLCLUST on these documents with dictionary A0. In the
second phase, we introduce all the documents between weeks 8 to
13 and run Algorithm NVLCLUST on these documents with dictio-
nary A1 (outputted by the first phase). We repeat the same steps
for the third phase (between weeks 14 to 17) and fourth phase (be-
tween weeks 18 to 27). The reason for choosing such asymmetric
time intervals is to make sure that at least one new topic cluster gets
introduced in each phase.
As our second dataset we use the 20 Newsgroups corpus3. The

corpus contains 18,774 articles distributed among 20 clusters where
each cluster is a Usenet group. For our experiments, we use a vo-
cabulary of 10,000 terms selected based on frequency. We do a set
of controlled experiments on this corpus. Again, we introduce the
documents in phases. Documents within each cluster are tempo-

3http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 4: Interpolated pairwise precision-recall curves for TDT2, obtained by varying ζ and η between [0.05, 0.15].

rally ordered, and we use this temporal ordering to introduce the
documents. At the end of Phase i − 1, we have documents from
some (old) clusters, and in Phase i we introduce a mixture of doc-
uments, some coming from these old clusters and some belonging
to new clusters; and see how well our algorithm performs in detect-
ing these new clusters. We begin Phase 0 with documents sampled
from 6 randomly chosen clusters. In each subsequent phase, we
introduce documents from 2 new clusters. The numbers of docu-
ments from old and new clusters added at each phase are presented
in Table 1.
For our baselines withK-Means clustering, we run the algorithm

8 times (with random initialization for centroids) and take the best
result. For each phase, we set both k1 (number of topics to be
generated by Algorithm DICTCLUST) andK (number of clusters to
be generated byK-Means) to be equal to 10. We vary the threshold
0 ≤ ζ ≤ 1 to find the threshold where F1nvl is maximized for our
algorithm (similarly, for the DICT-KM algorithm with threshold ζ,
and for the NN-KM and NN-DICT algorithms with threshold η).
Table 1 presents the maximum F1nvl for both datasets (obtained

by varying ζ, η). Our algorithm always outperforms all the three
baselines. For TDT2, our algorithm gives on average 16.9% im-
provement in F1nvl score over the NN-KM, 6.7% improvement
over DICT-KM, and 4.3% improvement over NN-DICT. For 20
Newsgroups, we notice on average 16.0% improvement over NN-
KM, 7.0% improvement over DICT-KM, and 9.0% improvement
over NN-DICT. While the results shows that we get a big im-
provement over NN-KM, the improvements over DICT-KM and
NN-DICT are only moderate. Since, both DICT-KM and NN-
DICT use in parts our dictionary learning algorithm, the results
suggest that using dictionary learning could lead to an improve-
ment in the F1nvl score over just using nearest neighbor/clustering
techniques. Furthermore, our algorithm consistently outperforms
DICT-KM, and NN-DICT consistently outperforms NN-KM, in-
dicating that a dictionary-based clustering scheme results in better
clustering than SphericalK-Means.
Note that, the F1nvl scores are lower than what one would en-

counter in “typical clustering” applications. Intuitively, this hap-
pens because we evaluate these metrics only over the novel doc-
uments, which are far fewer in number than the documents from
the old clusters; and each missed document (from TNvlt \ Nvlt)
affects Recnvl combinatorially because of the pairwise mistakes
that they lead to (similarly, each wrongly added document from
Nvlt \ TNvlt severely affects Precnvl).
In Figure 4, we present interpolated (pairwise) precision-recall

curves [24] for the TDT2 dataset, obtained by varying the threshold
ζ, η. We see that the precision-recall curve of our algorithmmostly
dominates the curves of the baseline algorithms, which illustrates
the superiority of our algorithm over different operating points. The
curves for the 20 Newsgroups corpus are similar and are omitted for
lack of space.

7.4 Novel Document Detection Evaluation
The performance of our approach relies on first, accurately iden-

tifying novel documents, and then appropriately clustering these
document. Results in the previous section show that we do well
in the overall task of emerging topic detection, but in order to get
a better understanding of the strengths of our approach, we inves-
tigate performance on the sub-task of novel document detection.
Given a set of documents, this task is to classify each document
as either novel (positive) or non-novel (negative). True labeling is
created by labeling the documents from any of the emerging topic
clusters as positive, and the documents from any of the existing
true topics as negative. For evaluating this classification task, we
use Area Under Curve (AUC) of the ROC curve [24]. As a base-
line, we use the nearest neighbor (NN) approach explained in Sec-
tion 7.2. As mentioned earlier, this NN approach is one of the best
performing systems for FSD, a task that is very similar to novel
document detection.
The results, presented in Table 2, show that for this sub-task our

dictionary-based approach and the nearest neighbor approach have
almost the same performance. Even though the AUCs are near
identical, the sets of documents that the two approaches mark as
novel are quite different. This is evidenced by the superior perfor-
mance of our approach over NN-DICT, which uses the same ap-
proach for the second sub-task of clustering novel documents into
emerging topics (see Table 1). In summary, while our dictionary-
based approach is picking novel documents with the same accuracy
as NN, it is more likely to pick documents from the same emerging
topic.

TDT2 20 Newsgroups
Phase Our NN Our NN
1 0.982 0.982 0.941 0.942
2 0.926 0.933 0.941 0.942
3 0.976 0.961 0.880 0.880
4 0.844 0.850 0.898 0.902
5 0.915 0.917
6 0.917 0.921
7 0.919 0.920
Avg. 0.932 0.932 0.916 0.918

Table 2: Performance, in AUC, on novel document detection.

7.5 Watson Jeopardy Twitter Data
In Section 7.3, we evaluated our approach on labeled benchmark

data sets. Here, we analyze how well our approach performs in
practice, when applied to Twitter data. In particular, we look at
the Twitter discussion around IBM’s Watson DeepQA system.4 In
February 2011, the Watson DeepQA system participated on the

4http://www.ibm.com/watson



Jeopardy! game-show, competing against humans; and the event
was televised over 3 days: Feb 14, 15, and 16. We used Twit-
ter’s search API to collect all tweets relevant to the participation of
Watson in Jeopardy! from Feb 1 – 16; where tweets were judged
relevant by keyword and pattern filters. We used a sample set of
8,434 tweets from Feb 1 – 14, to initialize our dictionary. Then,
we tested our system on detecting emerging topics on a sample of
5,199 tweets from Feb 16. The entire corpus of tweets had a vo-
cabulary of size 1,139, after removing common stop words.
We give as input to Algorithm NVLCLUST the learned dictionary

and the tweets of Feb 16. Instead of presenting the entire range of
parameter values, here we pick k1 = 15 and ζ = 0.5 to illus-
trate the clusters identified at a particular setting. From the topic
clusters outputted by our algorithm, in Table 3, we present three
selected ones. These clusters were manually inspected to identify
the dominant topic in them. Note that, these three topics are emerg-
ing, as the date of their occurrence is Feb 15 or later, whereas we
learn our initial dictionary only on tweets till Feb 14.
The fourth and fifth columns in Table 3 show the size of the novel

clusters detected, and the number of tweets that were judged, by a
human annotator, to be relevant to the identified dominant topic in
these clusters. The sixth column shows the top keywords for each
topic. These are selected by looking at the atoms corresponding to
these topics in the dictionary matrix produced by Algorithm DICT-
CLUST and by picking the top 3 words on which these atoms have
the largest mass. The first selected cluster contains tweets on Wat-
son’s Final Jeopardy mistake on Feb 15th, which subsequently re-
ceived much media coverage. The second and third selected clus-
ters contain tweets related to two influential news articles on Feb
16. Note that, large fractions of tweets in these clusters are rele-
vant to the dominant topic, indicating high coherence of the iden-
tified clusters. Table 4 presents three sample tweets from each of
the three topics; which illustrates that our approach can cluster to-
gether tweets that are clearly on the same topic, even if syntactically
quite different. Being able to automatically comb through tens of
thousands, and potentially millions, of documents, to identify such
emerging topics of discussion amongst consumers is of significant
value to PR and marketing efforts.

8. RELATED WORK
Several existing approaches to identify hot topics or trends in so-

cial media are based on the frequency of mentions of terms, such
as Twitscoop.com, Trendistic.com, Twopular.com, and trends on
Twitter.com. While high frequency of terms may be a good indica-
tor of popularity, it does not necessarily identify new or emerg-
ing trends. Instead, comparing the relative frequency of occur-
rence of terms and phrases in the current time period to the oc-
currences in the past, is likely to identify more topical phrases.
Tomokiyo and Hurst [32] propose such an approach for extracting
key-phrases based on statistical language models, which they ap-
ply to 20 Newsgroups data. Similarly, Cataldi et al. [25] present an
approach in which they identify emergent keywords, which have
been extensively used in a given time period, but not in previous
ones. They find words that frequently co-occur with each emer-
gent word, and report these together as emerging topics. Glass et
al. [14] go a step further, from emerging words to tracking emerg-
ing memes – “distinctive phrases which propagate relatively un-
changed.” Their work focuses on building models to predict which
memes will spread widely. Our work differs from the above ap-
proaches by going beyond unigrams and n-grams, to identifying
novel clusters of similar documents, which provides a richer char-
acterization of topics. Furthermore, we distinguish emerging, novel
topics from merely popular or well-known ones.

9. CONCLUSION
User-generated content is increasingly playing a pivotal role as

the source for breaking news and developments, as well as shaping
opinions on a variety of matters ranging from products to policies.
In this paper, we presented a dictionary learning based framework
for detecting emerging topics in social media and related streams.
The dictionary learning formulation naturally combines ideas from
robustness, sparsity, and non-negative matrix factorization for anal-
ysis of streaming text. The overall framework was divided into two
stages—first, determining novel documents in the stream, and sub-
sequently identifying cluster structure among the novel documents.
The objective functions in each stage were optimized using the al-
ternating directions method, which can be easily parallelized for
further scalability. Empirical evaluation on a variety of datasets
illustrate the effectiveness of the proposed framework.
One can envision several directions for future work based on the

proposed framework. While the current work uses fixed sized dic-
tionaries, using adaptive dictionaries whose size changes based on
the set of active or emerging topics may be more desirable in certain
applications. While learning the dictionary At, the current work
uses the entire historical data P≤t. A fully online version which
only maintains sufficient statistics of historical data may be more
scalable for real world streams. Further, from an optimization per-
spective, one may be able to use accelerated gradient descent and
related proximal methods [33] to further speed up the alternating
directions method. Finally, while the focus of the current work was
on detecting emerging topics in text streams, similar ideas can be
developed for other domains (such as healthcare, climate sciences)
where detection of novel signal streams is of interest.
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