
Sparse Least-Squares Methods in the Parallel
Machine Learning (PML) Framework

Ramesh Natarajan
IBM T. J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY, 10598.
Email: nramesh@us.ibm.com

Vikas Sindhwani
IBM T. J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY, 10598.
Email: vsindhw@us.ibm.com

Shirish Tatikonda
Department of Computer Science

2015 Neil Avenue
Columbus, OH 43210-1277.

Email: tatikond@cse.ohio-state.edu

Abstract—We describe parallel methods for solving large-scale,
high-dimensional, sparse least-squares problems that arise in
machine learning applications such as document classification.
The basic idea is to solve a two-class response problem using a
fast regression technique based on minimizing a loss function,
which consists of an empirical squared-error term, and one or
more regularization terms. We consider the use of Lanczos-based
methods for solving these regularized least-squares problems,
with the parallel implementation in the Parallel Machine Learn-
ing (PML) framework, and performance results on the IBM Blue
Gene/P parallel computer.

Keywords-sparse regression; classification; parallel machine
learning;

I. INTRODUCTION

This paper considers the parallelization of regularized,
sparse, least-squares problems for machine learning applica-
tions. Although this topic has been widely studied in the
inverse problems and numerical analysis literature, and there
are several software implementations of the relevant parallel
algorithms, nevertheless, our work has a different focus with
two specific objectives, as described below.

The first objective is the implementation of sparse least-
squares methods using the Parallel Machine Learning (PML)
software framework [27]. This framework provides an abstract
parallel computational model with a supporting software API,
as described in [26], and any algorithms implemented with
this API do not require recoding or reimplementation when
targeted to any of the parallel platforms on which PML is
supported, which include platforms as disparate as commer-
cial parallel databases and distributed-memory HPC platforms
(with support for other parallel platforms also under active
consideration). Furthermore, algorithms developers using the
PML API do not have to be concerned with the parallel
programming details on any of these platforms, which are
abstracted away in the software API (the required platform-
specific programming details are confined to the control layer
in the PML framework, which is the only component in
the framework that needs to be reimplemented for each new
target platform, with the code for the individual algorithms,
as mentioned above, being unchanged). A final advantage of
the PML framework is that it provides an efficient, common
implementation of the services that are required by all machine

learning algorithms, such as data I/O with multiple formats,
parallel data partitioning, and parallel task control. However,
although many algorithms for clustering, classification and re-
gression have been implemented in PML, the experience with
algorithms for sparse training data sets has been somewhat
limited. Therefore, the current work addresses this lacuna, and
identifies the relevant implementation and performance issues
for this class of problems in the PML framework.

The second objective, which is more exploratory in na-
ture, is to consider the parallelization of sparse regression
algorithms from a broader perspective which includes the
examinaton of various evaluation criteria and parallelization
strategies for estimating the optimal value for the regulariza-
tion parameters in machine learning applications. For example,
a reasonable strategy in this context is to solve the regression
problem for several values of the regularization parameter, if
possible in parallel, and select the optimal value from this set
based on some evaluation criterion. However, depending on the
form of the regularization term, the sparsity of the data matrix,
and the number of values of the regularization parameter
being examined, and the form of the evaluation criterion
term, it is typically more efficient to explore the regularization
parameter space without parallelizing the computations along
this particular dimension (e.g., [9], [14]).

With these two objectives in mind, we consider the regres-
sion problem for a response variable y ∈ R with explanatory
covariates x ∈ RM , using a training data set of N labelled
data points {xi, yi}N

i=1. The regression function is assumed to
be linear in the covariates, f(x; w) = wT x, with parameters
w ∈ RM (the intercept terms in this linear model are absorbed
into a constant-valued feature in the covariate vector x). In
the specific context of machine learning applications such as
document classification, we are often interested in the two-
class regression problem, for which the response yi is binary
valued in the training data. We take yi ∈ {+1,−1} without
loss of generality, corresponding to whether or not a given
document with feature vector xi, belongs to the specified
topic category. The regression function f(x; w) can be used a
decision rule, y = sign(wT x) for classifying unlabelled “out-
of-sample” documents with feature vectors x, and in some
applications the magnitude of f(x; w) is also used as a score
for ranking the relative probability of a document having the

relevant class membership.
A major difficulty in obtaining a fast and scalable regression

methodology in these applications, is the large values for N
and M in the relevant training data sets. For example, M may
be O(105) or even larger (e.g., consider a document feature
vector x that encodes the relative frequency of occurence of
the individual words or word-phrases in a domain dictionary).
Similarly, N may be O(106) or larger for many applications
(e.g., consider the number of patents pending at the U.S. Patent
Office as a training corpus of documents). The regression
methods for such training data sets must take advantage of the
sparsity in these training data sets for computational efficiency
(e.g., many documents have only a small percentage of non-
zero entries in their feature vector representation). Large-
scale, sparse regression problems with variations on this theme
also arise in several areas besides document classification,
such as bioinformatics, sensor applications, image recognition,
collaborative filtering, speech recognition and machine-aided
translation.

The outline of this paper is as follows. Section II considers
the loss functions that are used for the sparse regression
problem, and which we anticipate supporting in the PML
framework. Section III considers the specific case of the
squared error loss function, and suitable regression methods
are described for the parameter estimation with large, sparse
data sets. Section V considers the iterative stopping conditions
and model selection criteria for the methods in Sections IV
and III respectively. Section VI describes some parallel im-
plementation results on the IBM Blue Gene/P computer, and
Section VII contains the summary discussion.

II. MATHEMATICAL MOTIVATION

The regression parameters w ∈ RM in the linear model
f(x; w) = wT x are estimated by minimizing the the regular-
ized empirical loss function over the training data,

argminw

[
1
N

N∑

i=1

l(yi, f(xi; w)) + R(w;µ)

]
. (1)

For the loss function term l(y, f) in (1), there are many
suitable choices in the two-class regression problem, such as,
|y−f | (absolute error), 1/2(y−f)2 (squared error), max(0, 1−
yf) (SVM), max(0, 1− yf)2 (L2-SVM), log(1 + exp(−yf))
(logistic), γ−1 log(γ(1 − yf)) (modified logistic, γ << 1).
The relative merits of these choices, from a computational
efficiciency and model quality viewpoint, are discussed in [30].

For the regularization term R(w;µ) in (1), a common
choice is Tikhonov regularization based on the l2 norm of
the parameter vector, 1/2µ||w||22, and this choice leads to
“shrinkage” of the terms in the estimated parameter vector
w (if a constant-valued feature is present, its coefficient may
often be excluded from this regularization term). Another
choice is the l1 norm regularization µ||w||1, which is widely
used for obtaining sparse feature selection, since many of the
terms in the estimated parameter vector are forced to zero.
However, note that in that context, the “sparsity” refers to

the terms in the estimated parameter vector w, whereas in
this paper it also refers to the large number of zeros in the
data vectors xi as well. In addition to parameter shrinkage
and sparsity, the regularization term can also be used to
impose other smoothness constraints over the feature space.
For example, consider 1/2µ(wT Lw) where L is a M × M
symmetric, positive-semidefinite matrix (so that R(w) is a
semi-norm regularization), in which the non-zero, off-diagonal
terms L(i, j) are negative values whose magnitude encodes
the affinity weights between the features i and j, and the
diagonal terms L(i, i) = −∑

i 6=j L(i, j) are the sign-reversed,
row-sum of the off-diagonal terms. In document classification,
one possible choice for L is the sparse graph Laplacian on
the nearest-neighbor adjacency graph of the M features, with
edge weights proportional to the feature similarity measures,
and this regularization term has the effect of shrinking the
coefficient parameters of strongly-coupled features to common
values (the strongly-coupled features are close to collinear in
the semi-norm induced by the regularization term). Another
choice is to contruct the graph Laplacian Le on the nearest-
neighbor adjacency graph of the N training data examples, and
then set L = XT LeX , which has the effect of smoothing the
regression response so that two data points that are strongly
coupled on this affinity graph, will also tend to have similar
regression responses. The affinity graphs that are used in this
regularization, may be based on extrinsic considerations that
are not part of the training data matrix, and for example,
one possible affinity-graph structure on the data examples can
be generated by the presence or absence of hyperlinks or
citations between any two documents, and this affinity measure
is of considerable interest in internet-based applications [29].
The construction of such a graph may make use of a large
amount of unlabeled data, which is in general more abundantly
available when compared to labeled examples. The use of
such graph-Laplacian based regularization methods have been
widely studied in transductive graph methods [18], and more
generally, in manifold regularization [1].

In many applications, multiple regularization terms may be
additively combined in (1), but this also entails the need to
estimate optimal values for each of these multiple regular-
ization parameters, which further increases the computational
difficulty, as discussed below in Section V.

For many combinations of the loss functions and regulariza-
tion terms, the optimization problem (1) is nonlinear and/or
non-differentiable, and specialized techniques have been de-
veloped for individual cases (e.g., SVM [17], L2-SVM [5],
[19], logistic [21], and modified logistic [30], [28]). Some
of these techniques are specifically designed for large, high-
dimensional data sets, and only require holding only small
sections of the large data matrices in memory (e.g., the co-
ordinate descent methods described in [30], [28], [5], which
iteratively improve the solution by cycling over the individual
features in the data set). For computational tractability, we
have found that in many of these methods, the regularization
parameter is either fixed at some reasonable value (e.g.,
µ = 1), or a few values of µ are examined using a hold-out

or cross-validation loss criterion, so that there is considerable
scope for using parallel computation to improve the estimates
for the optimal regularization parameters.

The case of the squared-error loss with Tikhonov regulariza-
tion has been very widely studied, and it is well known that the
optimization problem (1) in this case has an explicit solution
in terms of the generalized inverse of the normal equations
[10], [3]. However, for large N and M , the direct application
of this approach is prohibitively expensive, and further, does
not take advantage of the sparsity of the data matrix.

Regularized least-squares problems have also been widely
studied in the inverse problems literature (for a review, see
[12]). However, many of the applications there arise from
the discretization of integral or partial differential equations,
which typically lead to square data matrices that are either
dense, or if sparse, have some definite sparsity structure. In
contrast, machine learning applications often lead to rectan-
gular data matrices with a general sparsity structure. Never-
theless, many of the techniques used in the inverse problems
literature for obtaining the optimal regularization parameter,
can also be used for machine learning applications, as discused
further in Section V.

III. SPARSE LEAST SQUARES PROBLEMS

For the squared-error loss with Tikhonov regularization, (1)
becomes

argmin
w

||y −Xw||22 + µ||w||22, (2)

where y ∈ RN contains the response vector, and X ∈ RN×M

is the sparse data matrix whose rows contain the corresponding
feature vectors. The solution for (2) is equivalent to

w(µ) = (XT X + µI)−1XT y, (3)

where I is the conforming M ×M identity matrix, and the
notation w(µ) is used whenever it is necessary to make the
dependence of the solution w on µ explicit. However, as
mentioned earlier, it is impractical to obtain w from (3) for
large M , as it requires the formation and inversion of a dense
M × M matrix, even when the data matrix X is sparse. A
suitable alternative is to solve for w using an iterative Krylov
subspace method, where after denoting b = XT y, we have in
the m’th step of this iteration, that wm ∈ Km(XT X+µI, b),
where Km(XT X + µI, b) denotes the Krylov subspace of
order m, is equivalent to

Span{b, (XT X + µI)b, . . . , (XT X + µI)m−1b}. (4)

In particular, this Krylov subspace is shift-invariant for all
values of µ for which the Krylov matrix XT X + µI is
positive-definite, so that the approximation wm(µ) in the m’th
step for these values of µ can also be obtained in the same
subspace.

Thus, for example, an orthogonal basis for Km(XT X, b)
can be generated by the well-known Lanczos bidiagonalization

procedure [10], [3]. We denote the Lanczos vectors by uk,vk

for k = 1, 2, . . ., so that

XV k = Uk+1Bk (5)
XT Uk+1 = V kBT

k + αk+1vk+1e
T
k+1 (6)

where V k = [v1, . . . , vk] and Uk+1 = [u1, . . . , uk+1] are
orthogonal matrices with V T

k V k = Ik and UT
k+1Uk+1 =

I(k+1), and Bk is a is a (k + 1)× k bidiagonal matrix matrix
given by

Bk =




α1

β1
. . .
.

βk−1 αk

βk




, (7)

With the starting vectors u1 = y/||y||2 and v1 =
XT u1/||XT u1||2, we have for j ≥ 2,

βj−1uj = Xvj−1−αj−1uj−1, αjvj = XT uj−1−βj−1vj−1,
(8)

with βj−1 = uT
j Xvj−1 and αj = uT

j Xvj .
From (8), vj are the Lanczos vectors for the iteration matrix

XT X , since

XT XV k = V kBT
k Bk + αk+1βkvk+1e

T
k , (9)

and denoting the symmetric tridiagonal matrix T k = BT
k Bk,

so that

T k = Tridiag{αjβj−1, α
2
j + β2

j , αj+1βj}, (10)

then the Lanczos vectors vk are identical for the iteration
matrix XT X + µI , for µ > 0, with T k being replaced by
T k + µI .

Similarly, uj are the Lanczos vectors for the iteration matrix
XXT , since

(XXT)Uk+1 =Uk+1(BkBT
k + α2

k+1ekeT
k)

+ αk+1βk+1uk+2e
T
k ,

(11)

and denoting the symmetric tridiagonal matrix T̃ k = BT
k Bk+

α2
k+1ekeT

k , we have

T̃ k = Tridiag{αjβj , α
2
j + β2

j−1, αj+1βj+1}. (12)

From (9), the approximation wk ∈ Km(XT X, XT y) to (2)
satisfies the equation

wk = α1||y||2V k(BT
k Bk)−1e1. (13)

The tridiagonal matrices T k or T̃ k do not have to be explicitly
constructed or inverted, and in fact, wk (13) can be obtained
using simple update formulas that are similar to those for gen-
erating the Lanczos vectors. Specific examples of these update
formulas include the CGLS method, which is based on the
implicit Choleski factorization of T k and the LSQR method,
which is based on the more stable implicit-QR factorization
of T k ([3], Chapter 7).

Furthermore, by virtue of the shift-invariance of the Krylov
basis (4), the solution wk(µ) for multiple values can also be

obtained with a single Lanczos iteration (6), which is clearly
preferable to solving (2) anew for each value of µ.

Our parallel implementation in PML is therefore based on
the CGLS algorithm for the multi-shift case, as described in [9]
and further evaluated in [24]. The most expensive operations
algorithm, both in terms of the computational and I/O costs,
are the matrix-vector multiplications involving X and XT in
each iteration of the Lanczos procedure, which are parallelized
by partitioning the rows of X among the processors, and
computing the required matrix-vector products in a distributed
fashion, with the final result being collected in the designated
master processor.

IV. ITERATIVE STOPPING CONDITION

The stopping criterion for iterative convergence in the
Lanczos procedure requires monitoring the two terms that
appear in (2), and for any fixed µ, each of these terms will
tend to constant values, as the solution wk(µ) converges in
any iterative procedure. Therefore, it is important to be able to
estimate these two terms in a computationally-efficient way,
and to distinguish between any intermediate plateauing of
these quantities and their final converged values, during the
iterative process.

In particular, for the square-error loss with Tikhonov re-
qularization, the relevant terms ||y − Xw||22 and ||w||22 ap-
pearing in (2), which correspond to the norm of the residual
and solution vectors respectively, can be evaluated as part
of the Lanczos iteration, and furthermore, monotonic upper
and lower bounds for these quantities can also be estimated,
and a suitable stopping criteria for iterative convergence, as
mentioned above, can be achieved by monitoring the gap
between the upper and lower bounds for the two terms in
(2). This is in fact a special case of the more general problem
of computing bounds for the estimates of matrix moments
of the form gT (XT X + µI)pg for negative integer p and
certain vectors g, which can be obtained from a single Lanczos
iteration (6) as described in [11], [4]. This approach, whose
details we omit for brevity, not only provides a valuable
computational adjunct for the iterative stopping criterion, but
is also useful for evaluation the criterion used for obtaining
the optimal regularization parameter as described below.

V. OPTIMAL TIKHONOV PARAMETER ESTIMATION

The estimation of the optimal regularization parameter using
an exhaustive search requires solving (1) for many values of
µ, and selecting the optimum value from this set based on a
suitable evaluation criterion, such as the hold-out or the cross-
validation estimates of the loss function (2). This exhaustive-
search approach is computationally expensive, particularly in
the case when the search space involves multiple regularization
parameters. The use of gradient-based optimization methods
to guide the optimal parameter estimation has been considered
in [2], [20], [6], [7], although this still requires solving (2)
for many points in the joint parameter space and dealing
with the possibly non-convex optimization geometry of the
evaluation criterion. However, this suggests that parallelism

can be used in order to independently solve (2) for several
values of the regularization parameter (or several sets of values
in the multiple parameter case), even possibly as part of a line-
search optimization step in the gradient-based methods.

However, as mentioned above, in the case of the squared-
error loss with Tikhonov regularization, the solutions of (2)
for multiple values of µ can be obtained, with only a little
extra work, from a single Lanczos iteration itself. Similarly, the
estimates to well-known GCV or L-curve evaluation criteria
for multiple values of µ can be obtained from a single Lanczos
iteration, from which the optimal value of µ can be evaluated.
For instance, the GCV criterion [25], [8], which must be
optimized with respect to µ, is given by the ratio

‖(XT X + µI)−1XT y‖2
trace(XT X + µI)−1

, (14)

which is the closed-form expression for the leave-one-out error
in regularized least squares models. For large-scale, sparse
problems, the matrix inverse in the denominator is impractical
to evaluate, and an approximation to this denominator is
obtained by the use using stochastic trace estimators. Similarly,
the L-curve criterion is based on the highest curvature point
while plotting the solution norm ‖w‖2 against the residual
norm ‖y − Xw‖2 on a log-log scale [13]. We note this L-
curve criterion requires the estimation of the two terms that
appear in (2), as discussed previously for the iterative stopping
condition above.

However, apart from the GCV and L-curve criteria, a cross-
validation criterion may also be used to select the optimal
value of the regularization parameter. In this case, the model
computations for each independent cross-validation fold can
be carried out simultaneously along with the main Lanczos
iteration involving the full X data matrix. In the parallel
implementation of the Lanczos-based iterative method, which
uses a data-parallel row partitioning of the X , the matrix-
vector operations for each fold will involve various row subsets
of the X matrix, which can all be evaluated in a single data
scan of X , so that the entire set of matrix-vector operations for
training data and all cross-validation folds can be performed
with minimum disk and memory access costs. This implemen-
tation, whose details are omitted for brevity, takes advantage of
the generic support for cross-validation in the PML framework,
which ensures that the data in the cross-validation folds, and
hence the consistency of the optimal regularization parameter,
is invariant with the number of parallel processing nodes used
in the computations.

VI. COMPUTATIONAL RESULTS

Table (I) describes the sparse datasets, which are merely
chosen here to illustrate the performance analysis issues. The
source references for the data sets can be obtained from the
download site http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
datasets.

Figure 1 shows the format for sparse input data set that is
used by PML, along with a schematic row partitioning of the
data set, that ensures that each processor gets roughly the same

number of non-zero entries to process, upto the nearest row
boundary, for good load balance in the parallel computations.

No. of Examples No. of Features Percent Sparsity
a7a 16100 123 11.27
rcv1-train 67399 47236 0.16

TABLE I
DATASETS

<row#> 0 <#NZ>

<row#> <NZdim1> <V1>
...
<row#> <NZdim#NZ> <V#NZ>

<row#> <#NZ+1> <label>

header

trailer

data

1

2

3

1

2

3

read
as

Fig. 1. Sparse data row format and row-partitioning schematic

Figure 2 shows the classification accuracy for regression
models with rcv1-train in Table (I) evaluated on a hold-out
data set rcv1-test (not shown in Table (I)). These results point
to the importance of choosing the regularization parameter µ
to obtain the best model accuracy (note that the rcv1-train
and rcv1-test data sets from the original source have been
interchanged, with the larger of the two being used as the
training data set here for illustrative purposes).

 40

 45

 50

 55

 60

 65

 70

 75

 80

2-152-102-52025210215

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

µ

Classification Accuracy

Fig. 2. Accuracy for the rcv1-train/rcv1-test data sets

a7a data set

0
500

1000
1500
2000
2500

1 2 4 8 16 32 64 128 256
Number of Processors

Tim
e (

se
c) Computation

Communication

 rcv1-train data set

0
5000

10000
15000
20000

1 2 4 8 16 32 64
Number of Processors

Tim
e (

se
c) Computation

Communication

Fig. 3. Parallel performance for a7a and rcv1-train data sets

Figure 3 shows the parallel performance for these data sets
on the IBM Blue Gene/P [16], and for clarity of exposition,
these results were obtained by fixing the number of Lanczos
iterations (m = 50), fixing the relative convergence criterion
for the residual norm ε = 10−3, and evaluating solutions for
a fixed number of values of µ1, . . . , µl (l = 21). Note that
changing m and ε will change the overall program run time,
but not the run time on a per-iteration basis. Similarly, any
early-convergence of the iterations for a subset of the values
of µ has little or no impact on the per-iteration program run
time. Finally, increasing l changes the the amount of serial
work in the computation, but again typically with negligible
impact on the per-iteration program run time.

The major limitation in achieving a good parallel speedup is
the overhead of the collective communication costs. Although
these costs grow only as O(log P) for large P , the constant
factor depends on the following two aspects. The first aspect
is the size of the data being communicated, which on a
per-iteration basis for the sparse matrix-vector operations is
O(max(M, N)) (in contrast, the computational granularity
is O(ρNM/P), where ρ is the average row sparsity in the
data matrix), and as a result, the high-dimensional case with
large M,N is especially unfavorable for large P or small
α. The second aspect is the implementation of the collective
communications interface in PML, which is based on object
serialization and materialization, and although this interface
shields the algorithm developer from the details of the parallel
programming, there is a small but extra overhead of memory
allocation and memory copy operations in its implementation,
which may be particularly noticeable in the case of sparse
data sets which tend to have a lower ratio of computation to
communication. We are actively pursuing performance-tuning
optimizations to lower these communication costs, which will

improve the parallel performance closer to that for the “native”
implementation, while retaining all the benefits of the PML
approach.

The parallel speedup results in Figure 3 do not include the
results for cross-validation computations, for which the details
of the PML implementation and performance will be discussed
elsewhere.

VII. SUMMARY REMARKS

Our preliminary benchmark results point to the usefulness
of the PML framework for sparse matrix algorithms, although
further work is required in terms of fine-tuning the perfor-
mance and scalability. We note that the IBM Blue Gene/P
implementation is easily capable of handling much larger data
sets than those considered in this paper, but our goal here
has been to consider the implementation and performance
issues for sparse data sets in PML, rather than provide a
specific hardware capability demonstration. In future work,
we plan to further clarify the usefulness of these algorithms
in the PML implementation by comparing the model quality
and model training time with other state-of-the-art serial and
parallel algorithms that have been used for machine learning
applications.

The requirements for machine learning algorithms with
sparse data sets, indicates the potential for exploiting the
on-chip parallelism in multi-core processor architectures. For
instance, in document classification applications, the training
data set size is often constrained by the cost of manual
labelling of the examples, and furthermore, regression models
of acceptable quality may be obtained without using the
largest possible training data sets. Therefore, particularly for
highly-sparse data sets, the computation time, rather than the
memory requirement, is the primary driver for the parallel
implementation. The PML computational model, which in this
paper was considered only for distributed-memory computers,
can also be expected to provide a multi-threaded, multi-core
implementation with good data locality and low synchroniza-
tion overheads. In addition, the use of shared memory will
considerably reduce the communication overheads that are a
factor in the in the parallel speedup results described in this
paper.

REFERENCES

[1] M. Belkin, P. Niyogi and V. Sindhwani, Manifold Regularization:
A Geometric Framework for Learning from Labeled and Unlabeled
Examples, Journal of Machine Learning Research, Vol. 7, pp. 2399-
2434, 2006.

[2] Y. Bengio, Gradient-based optimization of hyperparameters, Neural
Computation, vol 12, pp. 1889-1900, 2000.

[3] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM,
Philadelphia, 1996.

[4] D. Calvetti, G. H. Golub, L. Reichel and Ax B, Estimation of the L-
Curve via Lanczos Bidiagonalization, BIT, 39, pp. 603-619, 1997.

[5] K. W. Chang, C. J. Hsieh and C. J. Lin, Coordinate Descent Method
for Large-scale L2-loss Linear Support Vector Machines, Journal of
Machine Learning Research, Vol. 9, pp. 1369-1398, 2008.

[6] O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee, Machine
Learning, Vol. 46, pp. 131-159, 2002.

[7] C. B. Do, C. S. Foo and A. Y. Ng, Efficient multiple hyperparameter
learning for log-linear models, Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems, Vancouver,
British Columbia, Canada, December 3-6, 2007. MIT Press 2008.

[8] L. Elden, A note on the computation of the generalized cross-validation
function for ill-conditioned least squares problems, BIT, Vol. 24, pp.
467-472 (1984).

[9] A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Philips
regularizations, SIAM J. Scientific Computing, Vol. 20, pp. 1831-1850
(1999)

[10] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore MD, Third Edition, 1996.

[11] G. H. Golub and U. von Matt, Tikhonov regularization for large scale
problems, in Workshop on Scientific Computing, (eds. G. H. Golub,
S. H. Lui, F. Luk, R. J. Plemmons), pp. 3-26, Springer, New York,
1997.

[12] M. Hanke and P. C. Hansen, Regularization Methods for Large-Scale
Problems, Surveys on Mathematics for Industry, Vol. 3, pp. 253-315
(1993).

[13] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the
regularization of discrete ill-posed problems, SIAM J. of Sci Computing,
Vol. 14, 1487-1503, 1993.

[14] T. Hastie, S. Rosset, R. Tibshirani, J. Zhu and N. Christianini, The Entire
Regularization Path for the Support Vector Machine, Journal of Machine
Learning Research, Vol. 5, pp. 1391 - 1415, (2004).

[15] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A
Berkeley view of cloud computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California, Berkeley, Feb 2009.

[16] IBM Blue Gene Team, Overview of the IBM Blue Gene/P Project,
Special Issue on Applications of Massively Parallel Systems, IBM
Journal of Research and Development, pp. 199-220, Vol. 52(1/2) (2008).

[17] T. Joachims, Training linear SVMs in linear time, Proceedings of the
ACM Conference on Knowledge Discovery and Data Mining, 2006.

[18] R. Johnson and T. Zhang, Graph-based Semi-supervised Learning and
Spectral Kernel Design, IEEE Transactions on Information Theory, Vol.
54(1), pp. 275-288, 2008

[19] S. S. Keerthi and D. DeCoste, A modified Newton method for fast
solution of large scale linear SVMs, Journal of Machine Learning
Research, Vol. 5, pp. 361-397, 2004.

[20] S. S. Keerthi, V. Sindhwani and O. Chapelle, An Efficient Method for
Gradient-based Adaptation of Hyperparameters in SVM Models, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007. MIT Press 2008.

[21] C. J. Lin, R. C. Weng and S. S. Keerthi, Trust region Newton method for
large-scale logistic regression, Journal of Machine Learning Research,
vol. 9, pp. 627-650, 2008.

[22] MPICH2, http://www.mcs.anl.gov/research/projects/mpich2/.
[23] A. N. Tikhonov and V. B. Glasko, Use of the regularization method

for non-linear problems, USSR Comput. Math. Math. Phys. vol. 5, pp.
93-107 (1965).

[24] J. van den Eshof and G. L. J. Sliejpen, Accurate conjugate gradient
methods for families of shifted systems, Appl. Numer. Math, Vol 49, No.
1, pp. 17-37, 2004.

[25] G. Wahba, Spline Models for Observational Data, SIAM Philadelphia
1991.

[26] E. Yom-Tov, U. Aharoni, A. Ghoting, E. Pednault, D. Pelleg,
H. Toledano, and R. Natarajan, An Introduction to the IBM Par-
allel Mining Toolkit, http://www.ibm.com/developerworks/grid/library/
gr-ipmlt/index.html (2007).

[27] E. Yom-Tov, E. Pednault, R. Natarajan, D. Pelleg, H. Toledano, E. Aha-
roni, Y. Ben-haim, Parallel Machine Learning Toolbox: User Guide,
http://www.alphaworks.ibm.com/tech/pml.

[28] T. Zhang and V. S. Iyengar, Recommendation Systems Using Linear
Classifiers, Journal of Machine Learning Research, Vol. 2, No. 1, pp.
313-334, 2002.

[29] T. Zhang, A. Popescul and B. Dom, Linear Prediction Models with
Graph Regularization for Web-page Categorization, Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Philadephia PA, pp. 821-826, 2006.

[30] T. Zhang and F. J. Oles, Text Categorization based on regularized linear
classification methods, Information Retrieval, Vol. 4, No. 1, pp. 5-31,
2001.

