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Abstract
We consider the problem of improving the ef-
ficiency of randomized Fourier feature maps
to accelerate training and testing speed of ker-
nel methods on large datasets. These approx-
imate feature maps arise as Monte Carlo ap-
proximations to integral representations of shift-
invariant kernel functions (e.g., Gaussian ker-
nel). In this paper, we propose to use Quasi-
Monte Carlo (QMC) approximations instead
where the relevant integrands are evaluated on a
low-discrepancy sequence of points as opposed
to random point sets as in the Monte Carlo ap-
proach. We derive a new discrepancy measure
called box discrepancy based on theoretical char-
acterizations of the integration error with respect
to a given sequence. We then propose to learn
QMC sequences adapted to our setting based on
explicit box discrepancy minimization. Our the-
oretical analyses are complemented with empir-
ical results that demonstrate the effectiveness of
classical and adaptive QMC techniques for this
problem.

1. Introduction
Kernel methods (Schölkopf & Smola, 2002; Wahba, 1990;
Cucker & Smale, 2001) offer a comprehensive collection
of non-parametric modeling techniques for a wide range
of problems in machine learning. Let k : X × X → R de-
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note a kernel function defined on an input domain X ⊂ Rd.
The kernel k may be (non-uniquely) associated with an em-
bedding of the input space into a high-dimensional Hilbert
space H (with inner product 〈·, ·〉H) via a feature map,
Ψ : X 7→ H, such that k(x, z) = 〈Ψ(x),Ψ(z)〉H. Stan-
dard regularized linear statistical models inH then provide
non-linear inference with respect to the original input rep-
resentation. The algorithmic basis of such constructions are
classical Representer Theorems (Wahba, 1990; Schölkopf
& Smola, 2002) that guarantee finite-dimensional solutions
of associated optimization problems, even if H is infinite-
dimensional.

However, there is a steep price of these elegant general-
izations in terms of scalability. Consider, for example,
least squares regression given n data points {(xi, yi)}ni=1

and assume that n � d. The complexity of linear re-
gression training using standard least squares solvers is
O(nd2), with O(nd) memory requirements, and O(d) pre-
diction speed on a test point. Its kernel-based nonlinear
counterpart, however, requires solving a linear system in-
volving the Gram matrix of the kernel function (defined by
Kij = k(xi,xj)). In general, this incurs O(n3 + n2d)
complexity for training, O(n2) memory requirements, and
O(nd) prediction time for a single test point – none of
which are particularly appealing in “Big Data” settings.

In this paper, we revisit the randomized construction of a
family of low-dimensional approximate feature maps pro-
posed by Rahimi & Recht (2007) for scaling up kernel
methods. These randomized feature maps, Ψ̂ : X 7→
Cs, provide low-distortion approximations for (complex-
valued) kernel functions k : X × X → C:

k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Cs (1)

where Cs denotes the space of s-dimensional complex
numbers with the inner product, 〈α, β〉Cs =

∑s
i=1 αiβ

∗
i ,
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with z∗ denoting the conjugate of the complex number
z. Though Rahimi & Recht (2007) define real-valued
feature maps as well, our technical exposition is simpli-
fied by adopting the generality of complex-valued fea-
tures. The approximation in (1) leads to scalable solu-
tions, e.g., for regression we get back to O(ns2) training
and O(s + maptime) prediction speed where maptime is
the time to generate random features for a test input, with
O(ns) memory requirements. In particular, the approxi-
mation in (1) is valid for an important class of kernel func-
tions which are shift-invariant. A kernel function k on Rd
is called shift-invariant if k(x, z) = g(x − z), for some
complex-valued positive definite function g on Rd. Pos-
itive definite functions are those that satisfy the property
that given any set of m points, x1 . . .xm ∈ Rd, the m×m
matrix A defined by Aij = g(xi − xj) is positive semi-
definite.

The starting point of Rahimi & Recht (2007) is a celebrated
result that characterizes the class of positive definite func-
tions:

Theorem 1 (Bochner (1933)). A complex-valued function
g : Rd 7→ C is positive definite if and only if it is the Fourier
Transform of a finite non-negative Borel measure µ on Rd,
i.e.,

g(x) = µ̂(x) =

∫
Rd
e−ix

Twdµ(w), ∀x ∈ Rd .

Without loss of generality, we assume henceforth that µ(·)
is a probability measure with associated probability den-
sity function p(·). The above result implies that a scaled
shift-invariant kernel can therefore be put into one-to-one
correspondence with a density p such that,

k(x, z) = g(x− z) =

∫
Rd
e−i(x−z)Twp(w)dw . (2)

For the most notable member of the shift-invariant family

of kernels – the Gaussian kernel: k(x, z) = e−
‖x−z‖22

2σ2 , the
associated density is again Gaussian, N (0, σ−2Id).

The integral representation of the kernel (2) may be approx-
imated as follows:

k(x, z) =

∫
Rd
e−i(x−z)Twp(w)dw (3)

≈ 1

s

s∑
j=1

e−i(x−z)Tws (4)

= 〈Ψ̂S(x), Ψ̂S(z)〉Cs , (5)

through the feature map,

Ψ̂S(x) =
1√
s

[
e−ix

Tw1 . . . e−ix
Tws

]
∈ Cs . (6)

The subscript S denotes dependence of the feature map
on the sequence S = {w1, . . . ,ws}. When elements of
the sequence are drawn from the distribution defined by
the density function p(·), the approximation in (4) may be
viewed as a standard Monte Carlo (MC) approximation to
the integral representation of the kernel. This simple obser-
vation is our point of departure from the work of Rahimi &
Recht (2007).

We are now in a position to state the contributions of this
paper:

◦ We propose to use the low-discrepancy properties of
Quasi-Monte Carlo (QMC) sequences to reduce the in-
tegration error in approximations of the form (4). A self-
contained overview of Quasi-Monte Carlo techniques
for high-dimensional integration problems is provided in
Section 2. In Section 3, we describe how QMC tech-
niques apply to our setting.

◦ We provide an average case theoretical analysis of the
integration error for any given sequence S (Section 4).

◦ This bound motivates an optimization problem over the
sequence S whose minimizer provides adaptive QMC
sequences fine tuned to our kernels (Section 5).

◦ Empirical results (Section 6) clearly demonstrate the
superiority of QMC techniques over the MC feature
maps (Rahimi & Recht, 2007), the correctness of our
theoretical analysis and the potential value of adaptive
QMC techniques for large-scale kernel methods.

2. Quasi-Monte Carlo Techniques: Overview
In this section we provide a self-contained overview of
Quasi-Monte Carlo (QMC). Due to space limitation we re-
strict our discussion to background that is necessary for un-
derstanding subsequent sections. We refer the interested
reader to the excellent reviews by Caflisch (1998) and Dick
et al. (2013) for more detailed exposition.

Consider the task of computing an approximation of the
following integral,

Id[f ] =

∫
[0,1]d

f(x)dx .

One can observe that if Xd is a random variable uniformly
distributed over [0, 1]d then Id[f ] = E [f(Xd)]. An empir-
ical approximation to the expected value can be computed
by drawing a random point set S = {w1, . . . ,ws} inde-
pendently from [0, 1]d, and computing:

IS [f ] =
1

s

∑
w∈S

f(w) .

This is the Monte Carlo (MC) method.

Define the integration error with respect to the point set S
as

εS [f ] = |Id(f)− IS(f)|. (7)
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Figure 1. Comparison of MC and QMC sequences.

When S is drawn randomly, the Central Limit Theorem
asserts that if s = |S| is large enough then εS [f ] ≈
σ[f ]s−1/2ν where ν is a standard normal random variable,
and σ[f ] is the square-root of the variance of f ; that is,

σ2[f ] =

∫
[0,1]d

(f(x)− Id(f))
2
dx . (8)

In other words, the root mean square error of the Monte
Carlo method is,(

ES
[
εS [f ]2

])1/2
= σ[f ]s−1/2. (9)

Therefore, the Monte Carlo method converges at a rate of
O(s−1/2).

The aim of QMC methods is to improve the convergence
rate by using a deterministic low-discrepancy sequence to
construct S, instead of randomly sampling points. The un-
derlying intuition is illustrated in Figure 1, where we plot
a set of 1000 two-dimensional random points (left graph),
and a set of 1000 two-dimensional points from a quasi-
random sequence (Halton sequence; right graph). In the
random sequence we see that there is an undesired cluster-
ing of points, and as a consequence empty spaces. Clus-
ters add little to the approximation the integral in those re-
gions, while in the empty spaces the integrand is not sam-
pled. This lack of uniformity is due to the fact that Monte
Carlo samples are independent of each other. By carefully
designing a sequence of correlated points to avoid such
clustering effects, QMC attempts to avoid this phenomena,
and thus provide faster convergence to the integral. A typ-
ical QMC sequence has a hierarchical structure: the initial
points sample the integrand on a coarse scale while the lat-
ter points sample it more finely.

Informally, the integration error with respect to a sequence
depends on a measure of variation of the integrand f over
the integration domain, and a sequence-dependent term that
typically measures the discrepancy, or degree of departure
from uniformity, of the sequence S. For example, the ex-
pected Monte Carlo integration error decouples into a vari-
ance term, and 1/

√
s as in (9). A remarkable and classical

result in QMC theory formalizes this intuition as follows.

Theorem 2 (Koksma-Hlawka inequality). For any func-
tion f with bounded variation, and sequence S =
{w1, . . . ,ws}, the integration error is bounded above as
follows,

εS [f ] ≤ D?(S)VHK [f ] . (10)

where VHK is the variation of f in the sense of Hardy and
Krause (see Niederreiter (1992)) defined in terms of the fol-
lowing partial derivatives,

VHK [f ] =
∑

I⊂[d],I 6=∅

∫
[0,1]|I|

∣∣∣∣∣ ∂f∂uI
∣∣∣∣
uj=1,j /∈I

∣∣∣∣∣ duI , (11)

and D? is the star discrepancy defined by

D?(S) = sup
x∈[0,1]d

|disrS(x)| , (12)

where disrS is the local discrepancy function

disrS(x) = Vol(Jx)− |{i : wi ∈ Jx}|
s

with Jx = [0, x1)×· · ·× [0, xd) with Vol(Jx) =
∏d
j=1 xj .

An infinite sequence w1,w2, . . . is defined to be
a low-discrepancy sequence if, as a function of s,
D?({w1, . . . ,ws}) = O((log s)d/s). It is conjectured that
this decay rate of discrepancy is in fact optimal. It is outside
the scope of this paper to describe these different construc-
tions in detail. However we mention that notable members
are Halton sequences, Sobol’ sequences, Faure sequences,
Niederreiter sequences, and more (see Dick et al. (2013),
Section 2).

The classical QMC theory, which is based on the Koksma-
Hlawka inequality and low discrepancy sequences, thus
achieves a convergence rate of O((log s)d/s). While this
is asymptotically superior to O(1/

√
s) for a fixed d, it re-

quires s to be exponential in d for the improvement to man-
ifest. As such, in the past QMC methods were dismissed as
unsuitable for very high-dimensional integration.

However, several authors noticed that QMC methods per-
form better than MC even for very high-dimensional inte-
gration (Sloan & Wozniakowski, 1998; Dick et al., 2013).
Contemporary QMC literature explains and expands on
these empirical observations, by leveraging the structure of
the space in which the integrand function lives, to derive
more refined bounds and discrepancy measures, even when
classical measures of variation such as (11) are unbounded.
This literature has evolved along at least two directions:
one, where worst-case analysis is provided under the as-
sumption that the integrands live in a Reproducing Ker-
nel Hilbert Space (RKHS) of sufficiently smooth and well-
behaved functions (see Dick et al. (2013), Section 3) and
second, where the analysis is done in terms of average-case
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error, under an assumed probability distribution over the in-
tegrands, instead of worst-case error (Wozniakowski, 1991;
Traub & Wozniakowski, 1994). We refrain from more de-
tails, as these are essentially the paths that the analysis in
Section 4 follows for our specific setting.

3. QMC Feature Maps: Our Algorithm
We assume that the density function in (2) can be written
as p(x) =

∏d
j=1 pj(xj), where pj(·) is a univariate density

function. The density functions associated to many shift-
invariant kernels, e.g. Gaussian, Laplacian and Cauchy,
admit such a form.

The QMC method is generally applicable to integrals over a
unit cube. So typically integrals of the form (2) are handled
by first generating a discrepancy sequence t1, . . . , ts ∈
[0, 1]d, and transformed it into a sequence w1, . . . ,ws in
Rd, instead of drawing the elements of the sequence from
p(·) as in the MC method.

To convert (2) to an integral over the unit cube, a simple
change of variables suffices. For t ∈ Rd, define

Φ−1(t) =
(
Φ−1

1 (t1), . . . ,Φ−1
d (td)

)
∈ Rd, (13)

where Φj is the cumulative distribution function (CDF) of
pj , for j = 1, . . . , d. By setting w = Φ−1(t), (2) can be
equivalently written as∫

Rd
e−i(x−z)Twp(w)dw =

∫
[0,1]d

e−i(x−z)TΦ−1(t)dt .

(14)

Thus, a low discrepancy sequence t1, . . . , ts ∈ [0, 1]d can
be transformed using wi = Φ−1(ti), which is then plugged
into (6) to yield the QMC feature map. This simple proce-
dure is summarized in Algorithm 1.

The main question is, of course, which sequence to use?
One natural choice is the classical low-discrepancy se-
quences (e.g. Halton, Sobol’). Implementations of these
sequences are provided by several scientific libraries (e.g.
MATLAB and the GNU Scientific Library), so using these
sequences is rather effortless. In Section 6 we give empir-
ical evidence that these sequences produce better approx-
imations to the kernel as compared to the MC approach
of Rahimi & Recht (2007).

However, classical analysis (e.g., using Koksma-Hlawka
inequality) is inapplicable as the variation of the integrand
e−i(x−z)TΦ−1(t) is not bounded. Therefore, in the next sec-
tion we develop a new discrepancy measure, which we call
box discrepancy, that is specifically tuned for the problem
at hand. We show that the square of the box discrepancy is
equal to the expected integration error squared when x− z
is distributed uniformly. We give numerical evidence that
several popular low-(star)-discrepancy sequences tend to

Algorithm 1 Quasi-Random Fourier Features
1: Input: Shift-invariant kernel k, size s.
2: Output: Feature map Ψ̂(x) : Rd 7→ Cs.

3: Find p, the inverse Fourier transform of k.
4: Generate a low discrepancy sequence t1, . . . , ts.
5: Transform the sequence: wi = Φ−1(ti) by (13).

6: Set Ψ̂(x) =
√

1
s

[
e−ix

Tw1 , . . . , e−ix
Tws

]
.

have smaller box discrepancy values than random (MC) se-
quences, explaining why QMC feature maps are more ef-
fective. We also propose an adaptive QMC scheme that is
based on minimizing the proposed box discrepancy mea-
sure.

4. Theoretical Analysis and Average Case
Error Bounds

The goal of this section is to develop a framework for an-
alyzing the approximation quality of QMC feature maps
when used in (3)-(6). In particular, we derive a new dis-
crepancy measure, box discrepancy, that characterizes in-
tegration error for the set of integrals defined with respect
to the underlying data domain. Proofs for all the assertions
can be found in supplementary material. Throughout this
section we use the convention that S = {w1, . . . ,ws}. We
also use the notation X̄ = {x− z | x, z ∈ X}.
We start with the observation that the classical Koksma-
Hlawka inequality, cannot be immediately applied to the
most important cases in for our setting.

Proposition 3. For any p(x) =
∏d
j=1 pj(xj), where pj(·)

is a univariate density function, define Φ−1(t) by (13). For
a fixed u ∈ Rd, variation VHK [·] (11) is unbounded for
fu(t) = e−iu

TΦ−1(t), t ∈ [0, 1]d.

Given a probability density function p(·) and S, we define
the integration error εS,p[f ] of a function f with respect to
p and the s samples as,

εS,p[f ] =

∣∣∣∣∣
∫
Rd
f(x)p(x)dx− 1

s

s∑
i=1

f(wi)

∣∣∣∣∣ . (15)

Next, we note that if integrands belong to a Reproducing
Kernel Hilbert Space (RKHS), a worst-case integration er-
ror bound can be shown as below; see Cucker & Smale
(2001) for the definition of RKHS.

Proposition 4 (Integration Error in an RKHS). Let H
be a RKHS with kernel h(·, ·). Assume that κ =
supx∈Rd h(x,x) <∞. Then, for all f ∈ H we have,

εS,p[f ] ≤ ‖f‖HDh,p(S) , (16)

where
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Dh,p(S)2 =

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ−

2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω +

1

s2

s∑
l=1

s∑
j=1

h(wl,wj) . (17)

For a vector b ∈ Rd, let us define �b = {u ∈ Rd | |uj | ≤
bj}. If bj = supu∈X̄ |uj | then X̄ ⊂ �b, so the set of
integrands

F�b =
{
fu(x) = e−iu

Tx, u ∈ �b
}

(18)

is broader than the set of integrands we wish to approxi-
mate.

Now, consider the space of functions that admit an integral
representation over F�b of the form,

f(x) =

∫
u∈�b

f̂(u)e−iu
Txdu where f̂(u) ∈ L2(�b) .

(19)
This space is associated with bandlimited functions, i.e.,
functions with compactly-supported inverse Fourier trans-
forms, which are of fundamental importance in the
Shannon-Nyquist sampling theory. Under a natural choice
of inner product, these spaces are called Paley-Wiener
spaces and they constitute an RKHS.
Proposition 5 (Kernel of Paley-Wiener RKHS (Berlinet
& Thomas-Agnan, 2004; Yao, 1967; Peloso, 2011)). By
PWb, denote the space of functions which admit the rep-
resentation in (19), with the inner product 〈f, g〉PWb

=

(2π)2d〈f̂ , ĝ〉L2(�b). PWb is an RKHS with kernel func-
tion,

sincb(u,v) = π−d
d∏
j=1

sin (bj(uj − vj))
uj − vj

. (20)

For notational convenience, in the above we define
sin(0)/0 to be 1. Furthermore, 〈f, g〉PWb

= 〈f, g〉L2(�b).

For the kernel function described above, the discrepancy
measure Dh,S defined in Proposition 4 can be expressed
more explicitly.
Theorem 6 (Discrepancy in PWb). Suppose that p is a
probability density function, and that we can write p(x) =∏d
j=1 pj(xj) where each pj is a univariate probability den-

sity function. Let ϕj be the characteristic function associ-
ated with pj . Then,

Dsincb,p(S)2 = (π)−d
d∏
j=1

∫ bj

−bj
|ϕj(β)|2dβ −

2(2π)−d

s

s∑
l=1

d∏
j=1

∫ bj

−bj
ϕj(β)eiwljβdβ +

1

s2

s∑
l=1

s∑
j=1

sincb(wl,wj) . (21)

This naturally leads to the definition of the box discrepancy,
analogous to the star discrepancy described in Theorem 2.

Definition 7 (Box Discrepancy). The box discrepancy of a
sequence S with respect to p is defined as,

D�b
p (S) = Dsincb,p(S) .

For notational convenience, we generally omit the b from
D�b
p (S) as long as it is clear from the context. The worse-

case integration error bound for Paley-Wiener spaces is
stated in the following as a corollary of Theorem 4.

Corollary 8 (Integration Error in PWb). For f ∈ PWb

we have
εS,p[f ] ≤ ‖f‖PWb

D�
p (S).

The integrands we are interested in (i.e. functions in F�b)
are not members of PWb. However, their damped approx-
imations of the form f̃u(x) = e−iu

Tx sinc(Tx) are mem-
bers of PWb with ‖f̃‖PWb

= 1√
T

. Hence, we expect D�
p

to provide a discrepancy measure for integrating functions
in F�b.

More formally, the expected square error of an integrand
drawn from a uniform distribution overF�b is proportional
to the square discrepancy measure D�

p (S). This result is
in the spirit of similar average case analysis in the QMC
literature (Wozniakowski, 1991; Traub & Wozniakowski,
1994).

Theorem 9 (Average Case Error).

Ef∼U(F�b)

[
εS,p[f ]2

]
=

(2π)d∏d
j=1 bj

D�
p (S)2 . (22)

We now give an explicit formula for the case that p(·) is the
density function of the multivariate Gaussian distribution
with zero mean and independent components. This is an
important special case since this is the density function that
is relevant for the Gaussian kernel.

Corollary 10 (Discrepancy for Gaussian Distribution).
Let p be the d-dimensional multivariate Gaussian density
function with zero mean and covariance matrix equal to
diag(σ−2

1 , . . . , σ−2
d ). We have,

D�
p (S)2 =

1

s2

s∑
l=1

s∑
j=1

sincb(wl,wj) + C −

2

s

s∑
l=1

d∏
j=1

clj Re

(
erf

(
bj

σj
√

2
− iσjwlj√

2

))
,

where clj =
(

σj√
2π

)
e−

σ2jw
2
lj

2 and C =∏d
j=1

σj
2
√
π

erf
(
bj
σj

)
.

In the above erf is the complex error function; see Weide-
man (1994) and Mori (1983) for more details.
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5. Learning Adaptive QMC Sequences
For simplicity in this section we assume that p is the den-
sity function of Gaussian distribution with zero mean. We
also omit the subscript p from D�

p . Similar analysis can be
derived for other density functions.

Error characterization via discrepancy measures is typi-
cally used in the QMC literature to prescribe optimal se-
quences. Unlike the star discrepancy (12), the box discrep-
ancy is a smooth function of the sequence with a closed-
form formula. This allows us to both evaluate various can-
didate sequences, and select the one with the lowest dis-
crepancy, as well as to adaptively learn a QMC sequence
that is specialized for our problem setting via numerical op-
timization. This task is posed in terms minimization of the
box discrepancy function (23) over the space of sequences
of s vectors in Rd:

S∗ = arg minS=(w1...ws)∈Rds D
�(S) . (23)

The gradient of D�(S) is given by the following proposi-
tion.

Proposition 11 (Gradient of Box Discrepancy). Define the
following scalar functions and variables,

sinc′(z) =
cos(z)

z
− sin(z)

z2
, sinc′b(z) =

b

π
sinc′(bz) ;

cj =

(
σj√
2π

)
, j = 1, . . . , d ;

gj(x) = cje
−
σ2j
2 x

2

Re

(
erf

[
bj

σj
√

2
− iσjx√

2

])
;

g′j(x) = −σ2
jxgj(x) +

√
2

π
cjσje

−
b2j

2σ2
j sin(bjx) .

Then, the elements of the gradient vector of D� are givenby,

∂D�

∂wlj
= −2

s
g′j(wlj)

∏
q 6=j

gq(wlq)

+

2

s2

s∑
m=1
m6=l

bj sinc′bj (wlj , wmj)
∏
q 6=j

sincbq (wlq, wmq)

 . (24)

The gradient can be plugged into any first order numeri-
cal solver for non-convex optimization. We use non-linear
conjugate gradient in Section 6.2.

The above learning mechanism can be extended in various
directions. For example, QMC sequences for n-point rank-
one Lattice Rules are integral fractions of a lattice defined
by a single generating vector v. This generating vector may
be learnt via local minimization of the box discrepancy.

6. Experiments
In this section we report experiments with both classical
QMC sequences and adaptive sequences learnt from box
discrepancy minimization.

6.1. Experiments With Classical QMC Sequences

We examine the behavior of classical low-discrepancy se-
quences when compared to random Fourier features (i.e.,
MC). We consider four sequences: Halton, Sobol’, Lattice
Rules, and Digital Nets. For Halton and Sobol’, we use the
implementation available in MATLAB1. For Lattice Rules
and Digital Nets, we use publicly available implementa-
tions2. For the low-discrepancy sequence, we use scram-
bling and shifting techniques recommended in the QMC lit-
erature (see Dick et al. (2013) for details). For Sobol’, Lat-
tice Rules and Digital Nets, scrambling introduces random-
ization and hence variance. For Halton sequence, scram-
bling is deterministic, and there is no variance. The gener-
ation of these sequences is extremely fast, and quite negli-
gible when compared to the time for any reasonable down-
stream use. Therefore, we do not report running times as
these are essentially the same across methods.

Quality of Kernel Approximation In our setting, the
most natural and fundamental metric for comparison is
the quality of approximation of the Gram matrix. We ex-
amine how close K̃ (defined by K̃ij = k̃(xi,xj) where
k̃(·, ·) = 〈Ψ̂S(·), Ψ̂S(·)〉 is the kernel approximation) is
to the Gram matrix K of the exact kernel. In all compar-
isons, we work with a Gaussian kernel with bandwidth σ
set by using cross-validation in favor of the Monte Carlo
approach.

We examine four datasets: cpu (6500 examples, 21 di-
mensions), census (a subset chosen randomly with 5,000
examples, 119 dimensions), USPST (1,506 examples, 250
dimensions after PCA) and mnist (a subset chosen ran-
domly with 5,000 examples, 250 dimensions after PCA).
The reason we do subsampling on large datasets is to be
able to compute the full exact Gram matrix for compari-
son purposes. The reason we do dimensionality reduction
is that the maximum dimension supported by the Lattice
Rules implementation we use is 250. To measure the qual-
ity of approximation we use ‖K − K̃‖2/‖K‖2. The plots
are shown in Figure 2.

We can clearly see that classical low-discrepancy se-
quences consistently produce better approximations to the
Gram matrix. Among the four classical QMC sequences,
the Digital Net, Lattice and Halton sequences yield much
lower error. Similar results were observed for other

1http://www.mathworks.com/help/stats/quasi-random-
numbers.html

2http://people.cs.kuleuven.be/ dirk.nuyens/qmc-generators/
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Figure 2. Relative error on approximating the Gram matrix, i.e. ‖K − K̃‖2/‖K‖2, for various s. For each kind of random feature and
s, 10 independent trials are executed, and the mean and standard deviation are plotted.

datasets (not reported here). Although using randomized
variants of QMC sequences may incur some variance, the
variance is quite small compared to that of the MC ran-
dom features. We have observed that randomized QMC
sequences almost uniformly yield higher accuracies than
non-randomized QMC sequences (results not reported).

Does better Gram matrix approximation translate to
lower generalization errors? We consider two regression
datasets, cpu and census, and we use (approximate) ker-
nel ridge regression to build a regression model. The ridge
parameter is set by the optimal values we obtain via cross-
validation on the MC sequence. Table 1 summarizes the
results.

s HALTON SOBOL’ LATTICE DIGIT MC

C
P

U

100 0.0367 0.0383 0.0374 0.0376 0.0383
(0) (0.0015) (0.0010) (0.0010) (0.0013)

500 0.0339 0.0344 0.0348 0.0343 0.0349
(0) (0.0005) (0.0007) (0.0005) (0.0009)

1000 0.0334 0.0339 0.0337 0.0335 0.0338
(0) (0.0007) (0.0004) (0.0003) (0.0005)

C
E

N
S

U
S

400 0.0529 0.0747 0.0801 0.0755 0.0791
(0) (0.0138) (0.0206) (0.0080) (0.0180)

1200 0.0553 0.0588 0.0694 0.0587 0.0670
(0) (0.0080) (0.0188) (0.0067) (0.0078)

1800 0.0498 0.0613 0.0608 0.0583 0.0600
(0) (0.0084) (0.0129) (0.0100) (0.0113)

Table 1. Regression error, i.e. ‖ŷ − y‖2/‖y‖2 where ŷ is the
predicted value and y is the ground truth. For each kind of random
feature and s, 10 independent trials are executed, and the mean
and standard deviation are listed.

As we see, for cpu, all the sequences behave similarly,
with the Halton sequence yielding the lowest test error.
For census, the advantage of using Halton sequence is
significant (almost 20% reduction in generalization error)
followed by Digital Nets and Sobol’. In addition, MC se-
quence tends to generate higher variance across all the sam-
pling size. Overall, QMC sequences, especially Halton,
outperform MC sequences on these datasets.

Behavior of Box Discrepancy Next, we examine if D�

is predictive of the quality of approximation. We compute
the discrepancy values for the different sequences with dif-
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Figure 3. Discrepancy values (D�) for the different sequences on
cpu and census. For census we measure the discrepancy on
the central part of the bounding box (we use �b/2 in the opti-
mization instead of �b).

ferent sample sizes s. Note that while the bounding box
�b is set based on observed ranges of feature values in the
dataset, the actual distribution of points X̄ encountered in-
side that box might be far from uniform.

In Figure 3, for cpu we see a strong correlation between
the quality of approximation and the discrepancy values.
Interestingly, Lattice Rules sequences start with low dis-
crepancy, which does not decrease with increasing s. For
census, using the original bounding box yielded very lit-
tle difference between sequences (graph not shown). In-
stead, we plot the discrepancy when measured on the cen-
tral part of the bounding box (i.e., �b/2), which is equal to
the integration error averages over that part of the bounding
box. Presumably, points from X̄ concentrate in that region,
and they may be more relevant for downstream predictive
task. Again, we see strong correlation between approxima-
tion quality and the discrepancy value.

6.2. Experiments With Adaptive QMC

In this subsection we provide a proof of concept for learn-
ing adaptive QMC sequences as described in Section 5.
Sequences were optimized by applying non-linear Conju-
gate Gradient to optimize the normalized box discrepancy
(i.e., (2π)d/(

∏d
j=1 bj)D

�
p (S)2). The Halton sequence is

used as the initial setting of the optimization variables S.
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Figure 4. Examining the behavior of learning adaptive QMC sequences. Various metrics on the Gram matrix approximation are plotted.

It should be noted that adaptive QMC estimation is data-
independent and as such a one-time expense given s, d, b
and σ, with applicability to a variety of downstream appli-
cations of kernel methods.

In Figure 4 we examine how various metrics (discrepancy,
maximum squared error, mean squared error, norm of the
error) on the Gram matrix approximation evolve during the
optimization. In Figure 4 (a) we examine the behavior on
cpu. We see that all metrics go down as the iteration pro-
gresses. This supports our hypothesis that by optimizing
the box discrepancy we can improve the approximation of
the Gram matrix. We also see interesting behavior in Fig-
ure 4 (b), which examines the metrics on the scaled version
of the housing dataset. Initially all metrics go down,
but eventually mean error and the norm error start to go
up (the maximum error continues to go down). One plau-
sible explanation is that the integrands are not uniformly
distributed in the bounding box, and that by optimizing the
expectation over the entire box we start to overfit it, thereby
increasing the error in those regions of the box where inte-
grands actually concentrate. One possible way to handle
this is to optimize closer to the center of the box (e.g., on
�b/2) under the assumption that integrands concentrate
there. In Figure 4 (c) we try this on housing and see
that now the mean error and the norm error are much im-
proved, which supports the interpretation above. But the
maximum error eventually goes up. This is quite reason-
able as the outer parts of the bounding box are harder to
approximate, so the maximum error is likely to originate
from there. Subsequently, we stop the adaptive learning of
the QMC sequences early, to avoid the actual error from
going up due to averaging.

Next, we investigate the generalization error. We use the
same learning algorithm as the previous subsection. The
ridge parameter is set by the value which is near-optimal
for both sequences in cross-validation. Table 2 summa-
rizes the results. For cpu, the adaptive sequences can yield
lower test error when the sampling size is small. When
s = 500 or even larger (not reported here), the performance
of the sequences are very close. For census, the adaptive

s HALTON ADAPTIVEb ADAPTIVEb/4

C
P

U 100 0.0304 0.0315 0.0296
300 0.0303 0.0278 0.0293
500 0.0348 0.0347 0.0348

C
E

N
S

U
S

400 0.0529 0.1034 0.0997
800 0.0545 0.0702 0.0581

1200 0.0553 0.0639 0.0481
1800 0.0498 0.0568 0.0476
2200 0.0519 0.0487 0.0515

Table 2. Regression error, i.e. ‖ŷ − y‖2/‖y‖2 where ŷ is the
predicted value and y is the ground truth.

sequences do not show any benefit until s is 1200. After-
wards we can see at least one of the two adaptive sequences
can yield much lower error than Halton sequence for each
sampling size. However, in some cases, adaptive sequences
sometimes produce errors that are bigger than the unopti-
mized sequences. In most cases, the adaptive sequence on
the central part of the bounding box outperforms the adap-
tive sequence on the entire box.

7. Conclusion and Future Work
This paper is the first to exploit high-dimensional ap-
proximate integration techniques from the QMC litera-
ture in large-scale kernel methods, with promising empir-
ical results backed by rigorous theoretical analyses. Av-
enues for future work include incorporating stronger data-
dependence in the estimation of adaptive sequences and an-
alyzing how resulting Gram matrix approximations trans-
late into downstream performance improvements for a va-
riety of tasks.
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