QMC Feature Maps for Shift-Invariant Kernels

Appendix: Proofs

In this section we give detailed proofs of the assertions made in Section 4 and 5.

7.1. Proof of Proposition 3
Recall, for any t € R?, for 7 (t), we mean (@7 (t1),..., P, ' (ts)) € RY, where ®;(-) is the CDF of p;(-).

From fy(t) = e~ ®TH(E) for any j = 1,...,d, we have
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Then it is straightforward to get the following,
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With a change of variable, ®;(¢;) = v;, for j = 1,...,d, (25) becomes
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As this is a term in (11), we know that Vyy k[ fu(t)] is unbounded.

7.2. Proof of Proposition 4

We make the assumption that,
k= sup h(x,x) < 0. (26)
x€R4

We need the following lemmas, across which we will share some notation.

Lemma 12. Under assumption 26, if f € H, where H is an RKHS with kernel h(-,-), the integral fRd FX)p(x)dx is
finite.
Proof. For notational convenience, we note that

| $6onexix = B (X)),

where I [-] denotes expectation and X is a random variable distributed according to the probability density p on RY.
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Now consider a linear functional 7" that maps f to E[f(X)] i.e.
Tl =E[f(X)]. 27)

The linear functional 7" is a bounded linear functional on the RKHS #. To see this:

E[f(X)]] < E[f(X)]] ensen’sInequality)
< E[|{f, (X, ))n|] (Reproducing property)
< WfIIHE[|A(X,)]|%] (Cauchy-Schwartz)
< |IfIInE [ h(X,X)} — VR <oo. (Assumption (26))
This shows that the integral f]Rd X) (x)dx exists. O
Lemma 13. The function m( fRd x)dx € H. In addition, for any f € H,

/f x)dx = (f,m)y . (28)

Proof. From the Riesz Representation Theorem, every bounded linear functional on H admits an inner product represen-
tation. Therefore, for T" defined in Eqn. 27, there exists m € H such that,

TIf] =E[f(X)] = (f,m)n

Therefore we have, (f,m)» = [ f(x)p(x)dx forall f € H. For any z, choosing f(-) = h(z, -), where h(-, -) is the kernel
associated with H, from the reproducmg property we see that,

(h(a ) )y = m(z) = [ bz x)plx)dx
Hence, [, h(-,x)p(x)dx = m(-) € H. Eqn. (28) follows from E [f(X)] = (f, m). O

The proof of Proposition 4 follows from the existence Lemmas above, and the following steps.
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7.3. Proof of Theorem 6

We apply (17) to the particular case of h = sincp. We have

d .
—d sm(bj(wj — ij)) (s 4 Vo
/]Rd /]Rd h(w7 )P(W)p(¢)dwd¢ ™ /]Rd /]Rd 13 Wp]( J)p]((,b])d d¢

— —dH// sin(b wj ¢]¢J))p (w;)pj(d;)dw;de;

and

S

Z/Rd h(w;, w)p(w)dw

=1

_dZ/ Hsm wzj o j))pj(wj)dw
—dZH/ Sin(bj(w”_wj))pj(wj)dwj.

Wy — W,
1=1 j=1 Ly J

So we can consider each coordinate on its own.

Fix j. We have

[0 = [ [ cospapaiisas

IR
= f/ /el’glp(x)dxdﬁ
2 ), Jr

bj
- 3/ @

The interchange in the second line is allowed since the p;(x) makes the function integrable (with respect to x).

Now fix w € R as well. Let hj(x,y) = sin(b;(z — y))/m(z — y). We have

(o) () de = 1 [ sin(b;(w w))-ww
[ e e L
_ ﬂ_l/ Sm(bjx)pj(x—i—w)dx
R T

b]' )
= @) / o1 (B)e s,

—bj

where the last equality follows from first noticing that the characteristic function associated with the density function
z— pj(z 4+ w)is B — p(B)e"P, and then applying the previous inequality.
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We also have,

[/ sinbi@ = 9) ) ), () dedy
RJR

r—y

/R /R /0 ’ cos(B(z — y))p;(x)p; (y)dBdrdy

1 bj :
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The interchange at the third line is allowed because of p;(x)p;(y). In the last line we use the fact that the ¢; is Hermitian.

7.4. Proof of Theorem 9
Let b > 0 be a scalar, and let u € [—b,b] and z € R. We have,
/OC e—iux Sln(b(ﬂ? — z))d.’lj _ e—iuz ‘/OO e—i?ﬂ%ySin(Wy> dy
e m(x — z) . Y
= e ™ rect(u/2b)
— e*iuz .
In the above, rect is the function that is 1 on [—1/2,1/2] and zero elsewhere.

The last equality implies that for every u € (b and every x € R¢ we have
fu(x) = . fu(y) Sincb(yvx)dy .
R L

We now have for every u € Ub,

salful = | [ fuGopGdx = =3 fw)
) i=1

= /Rd o fu(y) siney (y, x)dyp(x)dx — é Z fu(y) sincy (y, w;)dy

i
i=1 YR

= » fuly) [/Rd siney (y, X)p(x)dx — i;Sincb(y,wi)l dy

Let us denote

. 1o~
rs(y) = / sincp (y, x)p(x)dx — — Zsmcb(y,wi) .
R 53
So,

6S,p[fu] =

fu(.Y)TS(Y)dY‘ .
]Rd

The function rg is in L2 so it has a Fourier transform #g. The above formula is exactly the value of 7 at u. That is,

esplful = [Fs(a)] .
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Now,

EfNu(]:Db) [esvp[-ﬂZ] = EUNLI(Db) [es,p[fu]2]
1
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= |Pg(u)|® b, | du
o 0 { T
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=105

The equality before the last follows from Plancherel formula and the equality of the norm in PW4, to the L2-norm. The
last equality follows from the fact that rg is exactly the expression used in the proof of Proposition 4 to derive DE.

7.5. Proof of Corollary 10

In this case, p(x) = H¢:1 pj(x;) where p;(x;) is the density function of A'(0,1/0;). The characteristic function associ-
_8?

202
J

ated with p; is ¢, (8) = e . We apply (21) directly.

For the first term, since

bj b B2
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we have
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(m) j|_|1/0 lp;(B)7dB j|:|1 A (J) (30)
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For the second term, since

b; , b B2
/ @j(ﬂ)elwljﬁdﬂ _ / 6_?+1wljﬁdﬂ
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we have

Uw b O Wy
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Combining (30), (31) and (21), (23) follows.

7.6. Proof of Proposition 11
Before we compute the derivative, we prove two auxiliary lemmas.

Lemma 14. Let x € R? be a variable and z € R? be fixed vector. Then,

Jsi ; . .
%(XZ) =b; Slncgj (xj,25) H sincy, (74, 2q) - (32)
J a7

We omit the proof as it is a simple computation that follows from the definition of sincy,.

Lemma 15. The derivative of the scalar function f(x) = Re {e"”Q erf (¢ + zdx)} , for real scalars a, c,d is given by,

2 2_.
gi —2axe” " Real [erf (¢ + idz)] + 7(576—%:2 edia?—c? sin(2cdx) .
Proof. Since
1 —ax? . —ax? . *
flz) = 5 (e erf(c + idz) + (e erf(c + zda:)) )
1 2 2
= 5 (67” erf(c+ idx) + e~ erf(c — zdx)) , (33)

it suffices to compute the the derivative g(z) = e~ erf(c + idz).
Let k(x) = erf(c 4 idx). We have
g (x) = —2aze " k(z) + e K (z) . (34)
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Since

k(x) = erf(c+idx)

) ct+idx R
= — e dz
7
) /c ) c+idx R
= — e ? dz—i—/ e % dz
ﬁ 0 c

2 / L R AP
_ 2 ([ eyt Gia) / et g ) (35)
\/77— ( 0 0

2 3 2 2 2,2 2
K (z) = Te_(c‘“d””) = \/Cled ¢ (sin(2cdw) + i cos(2edx)) (36)
T T

we have

We now have

—- - (—Qaze*af(k(x) + B (2)) + e (K (z) + (k’(:c))*))

1
= = (—4axe_”’”’2 Re [erf (¢ + idx)] + e~

2 4d A2a2—c?
2 —€

NG g sin(20dm)>
—ax? . 2d _ax? d2x2_c2 .
= —2aze Re [erf (¢ +idx)] + —=e e * sin(2cdz) . 37)

N3
O

Proof of Proposition 11. For the first term in (23), thatis % Y>> >, sincy (W, w;), to compute the partial deriva-
tive of wy;, we only have to consider when at least m or r is equal to [. If m = j = [, by definition, the corresponding term
in the summation is one. Hence, we only have to consider the case when m # r. By symmetry, it is equivalent to compute
the partial derivative of the following function S% anzl,m £l sincy (Wi, w,,, ). Applying Lemma 14, we get the first term
in (24).

Next, for the last term in (23), we only have consider the term associated with one in the summation and the term associated

2, 2
. .. . 4 75 “]I’ j 4 . 5 . . .
with j in the product. Since (\27) e~ Re (erf (0?1/5 — z%\}%” )) satisfies the formulation in Lemma 15, we can
J

simply apply Lemma 15 and get its derivative with respect to wy;.

(24) follows by combining these terms. [



