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Abstract

The goal of sentiment prediction is to automatically iden-

tify whether a given piece of text expresses positive or neg-

ative opinion towards a topic of interest. One can pose

sentiment prediction as a standard text categorization prob-

lem, but gathering labeled data turns out to be a bottle-

neck. Fortunately, background knowledge is often available

in the form of prior information about the sentiment polar-

ity of words in a lexicon. Moreover, in many applications

abundant unlabeled data is also available. In this paper,

we propose a novel semi-supervised sentiment prediction

algorithm that utilizes lexical prior knowledge in conjunc-

tion with unlabeled examples. Our method is based on joint

sentiment analysis of documents and words based on a bi-

partite graph representation of the data. We present an em-

pirical study on a diverse collection of sentiment prediction

problems which confirms that our semi-supervised lexical

models significantly outperform purely supervised and com-

peting semi-supervised techniques.

1 Introduction

In recent years there has been an explosion of user-

generated content on the Internet in the form of weblogs

(blogs), discussion forums and online review sites. This

phenomenon presents many new opportunities and chal-

lenges to both producers and consumers alike. For pro-

ducer, this user-generated content provides a rich source

of implicit consumer feedback. Tracking the pulse of this

ever-expanding blogosphere, enables companies to discern

what consumers are saying about their products, which pro-

vides useful insight on how to improve or market products

better. For consumers, the plethora of information and opin-

ions from diverse sources helps them tap into the wisdom of

crowds, to aid in making more informed decisions. These

decisions could range from which new digital camera to

buy, which movie to watch, or even who to vote for in up-

coming elections.

Though there is a vast quantity of information available,

the consequent challenge is to be able to analyze the mil-

lions of blogs available, and to glean meaningful insights

therein. One key component of this process is to be able

to gauge the sentiment expressed in blogs around selected

topics of interest. The emerging area of Sentiment Analysis

(see e.g., [7, 4]) focuses on this task of automatically identi-

fying whether a piece of text expresses a positive or negative

opinion towards the subject matter. Detecting the sentiment

expressed in documents turns out be an extremely difficult

task, and the performance of sentiment classifiers can vary

a great deal depending on the domain. As such, one of the

grand challenges of sentiment analysis is to build a robust

system that provides insights across a growing list of dif-

ferent products and topics of interest. Such a system needs

to be able to rapidly adapt to new domains with minimal

supervision.

Most prior work in sentiment analysis use knowledge-

based approaches (see e.g., [4, 6]), that classify the sen-

timent of texts based on lexicons defining the sentiment-

polarity of words, and simple linguistic patterns. There

have been some recent studies that take a machine learn-

ing approach (e.g., [7]) and build text classifiers trained on

documents that have been human-labeled as positive or neg-

ative. The knowledge-based approaches tend to be non-

adaptive, while the learning approaches do not effectively

exploit prior knowledge and require much effort through

human annotation of documents. In this paper, we present a

new machine learning approach that overcomes both draw-

backs of previous learning approaches. Firstly, we incor-

porate prior knowledge of sentiment-laden terms directly

into our model. Secondly, in order to adapt to new do-

mains with minimal supervision, we also exploit the large

amount of unlabeled data readily available. We present a

unified framework in which lexical background informa-

tion, unlabeled data and labeled training examples can be

effectively combined. We demonstrate the generality of our

approach, by presenting results on three, very different, do-

mains— blogs discussing enterprise-software products, po-

litical blogs discussing US Presidential candidates, and on-

line movie reviews.



2 Linear Sentiment Classification Models

In text classification, a document is typically represented

as a bag-of-words feature vector x ∈ RD. The entries

in this vector usually specify frequencies, or weighted fre-

quencies, for D words in a pre-specified vocabulary V .
Given such a representation, a linear classification model is

specified by a weight vector w ∈ RD which defines the bi-

nary classification function h(x) = sign(w⊤x)1. We next

discuss ways to set w given different kinds of information.

2.1 Unsupervised Lexical Classification

In the absence of any labeled data in a domain, one

can build sentiment-classification models that rely solely

on background knowledge, such as a lexicon defining the

polarity of words. Suppose we are given a manually con-

structed lexicon of positive and negative terms which we

denote by V+ ⊂ V and V− ⊂ V respectively. One straight-

forward approach to using this information is to measure

the relative frequency of occurrence of positive (e.g., great

and negative (e.g, terrible) terms in a document. The classi-

fication rule is then be given by h(x) = sign(
∑

i∈V+
xi −

∑

i∈V
−

xi), which corresponds to the choice wi = +1 for

all i ∈ V+, wi = −1 for all i ∈ V−, and wi = 0 for all

other terms.

For this study, we used a lexicon generated by the IBM

India Research Labs that was developed for other text min-

ing applications [8]. It contains 2,968 words that have been

human-labeled as expressing positive or negative sentiment.

In total, there are 1,267 positive and 1,701 negative unique

terms after stemming. We eliminated terms that were am-

biguous and dependent on context, such as dear and fine.

It should be noted, that this list was constructed without a

specific domain in mind; which is further motivation for us-

ing training examples and unlabeled data to learn domain-

specific connotations.

2.2 Supervised Regularization Models

In a setting where l labeled documents, {(xi, yi)}
l
i=1,

are available with yi ∈ {+1,−1}, one may attempt to

learn w by solving an optimization problem of the form,

w⋆ = argmin
w

1

l

∑l

i=1
V (w⊤xi, yi) + γ

2
‖w‖22 where

V (·, ·) is a loss function and γ is a real-valued regular-

ization parameter. For various choices for the loss func-

tion V , this optimization problem spans a large family of

learning algorithms. Popular choices include the hinge

loss: V (w⊤x, y) = max
[

0, 1− yw⊤x
]

, logistic loss:

V (w⊤x, y) = log
[

1 + exp(−yw⊤x)
]

and the squared

loss: V (w⊤x, y) = 1

2
(w⊤x − y)2, which respectively

1We assume w and x include a standard ”bias” component.

lead to the Support Vector Machine (SVM), Logistic Re-

gression and the classical Regularized Least Squares (RLS)

algorithms

Our methods build on RLS due to its simplicity and

excellent performance on classification tasks. In this

case, the solution is given by the D × D linear system,
[

1

l
X⊤X + γI

]

w = 1

l
X⊤y, where X is the l × D data

matrix whose rows are document vectors, and y is the vec-

tor of labels. Since documents almost always only contain

a very small fraction of words in the vocabulary, the data

matrix X is highly sparse. Due to this fact, the above linear

system can be very efficiently solved for large-scale prob-

lems (where both l and D are large) using sparse iterative

techniques such as Conjugate Gradient. Related techniques

have also been used for large-scale implementations of lin-

ear logistic regression2 and SVM models3.

3 Semi-supervised Lexical Classification

In this section, we begin by first incorporating lexical

knowledge in supervised learners. In Section 3.2 we extend

this approach to also include unlabeled data.

3.1 Incorporating Lexical Knowledge

It is well-known that RLS may be interpreted as maxi-

mum a posteriori (MAP) estimation under a Gaussian like-

lihood model for errors
(

yi −w⊤xi

)

, and a zero-mean

Gaussian prior for the weight parameters w. A natu-

ral way to incorporate lexical prior knowledge is to as-

sume a Gaussian prior for w with non-zero mean propo-

tional to the lexical weight vector wlex. This immedi-

ately implies the following modified MAP estimation prob-

lem, argmin
w

1

l

∑l

i=1
V (w⊤xi, yi) + γ

2
‖w − νwlex‖

2
2,

where ν is a parameter. It can be easily seen that

the solution is given by the following modified linear

system,
[

1

l
X⊤X + γI

]

w = 1

l
X⊤y + γνwlex. We call

this approach Lexical-RLS (LEX+RLS). The only difference

above with respect to RLS is the second term of the right-

hand-side which incorporates the lexical weights. Note that

Lexical RLS reduces to RLS when ν is set to 0, and defines
the the unsupervised lexical classifier (Section 2.1) when

there are no labeled examples, or when γ →∞.

3.2 Incorporating Unlabeled Data

Suppose now that in addition to a lexicon labeled with

sentiment polarity, we also have access to a large collection

of unlabeled documents. Most semi-supervised classifica-

tion algorithms implement the classical cluster assumption

2http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
3See http://vikas-sindhwani.org/svmlin.html



which states the following: if two documents are in the same

cluster, they are likely to be of the same class. Low-density

techniques implement this assumption by attempting to find

separators that do not cut through unlabeled data clusters.

Similarly, Graph-based techniques use unlabeled examples

to find classifiers that give smooth predictions on data clus-

ters. See [1] and references therein for cluster assumption

and overview of semi-supervised learning techniques.

In the presence of lexical knowledge we may further

qualify the cluster assumption as follows: if two documents

are in the same cluster dominantly supported on positive

(negative) sentiment words, they are likely to be positive

(negative) sentiment documents. In other words, the sen-

timent lexicon may be viewed as prior knowledge on the

structure of the data clusters over which the cluster assump-

tion ought to be enforced. Moreover, note that there is a

clear duality between documents and words. The sentiment

polarity of documents determines the polarity of words,

while the polarity of words determines the polarity of doc-

uments. We now present a novel semi-supervised learning

algorithm that simultaneously implements cluster assump-

tions for both documents and words while incorporating

partial supervision along both dimensions.

We begin by introducing a bipartite graph representa-

tion of the data, previously utilized in the context of co-

clustering [3]. We then formulate joint sentiment classifica-

tion of documents and words in terms of transductive pre-

diction on this graph whose nodes are viewed to be partially

labeled. However, since this approach is strictly transduc-

tive and does not allow prediction on new completely un-

seen test documents, we formulate a new objective function

that simultaneously projects the transductive solution to a

linear model. We now outline these steps leading to the

proposed algorithm.

Document-Word Bipartite Graph: In the semi-

supervised setting, let X denote the n × D data matrix

whose rows are the set of l labeled and (n − l) unlabeled
document vectors. Consider a bipartite graph, denoted by

G, with two sets of vertices: one corresponding to the n

documents, and another corresponding to the D words in

the vocabulary. Thus, G has n + D vertices. An undirected

edge (i, j) exists if the ith document contains the jth word.

Since G is bipartite, there are no edges between words or

between documents (though our formulation can be easily

extended to incorporate intra-document and/or intra-word

linkages). An edge signifies an association between a docu-

ment and a word. By putting positive weights on the edges,

we can capture the strength of this association. We use Xij

as the edge weight which corresponds to frequency (or idf-

weighted frequency) of term j in document i. Then, the

(n + D) × (n + D) adjacency matrix of G can be easily

seen to be given by A =

(

0 X

X⊤ 0

)

where the vertices

of the graph are ordered by taking the n documents (same

order as rows of X) followed by the D words (same order

as columns of X).

Transductive Sentiment Prediction: Next, we view G
as a partially labeled graph. Given sentiment labels for a

few document and word vertices, consider the problem of

completing the labeling of the rest of the vertices of the

graph. Such prediction problems on graphs have been well-

studied in the graph-based semi-supervised learning litera-

ture (see [1] and references therein), but to the best of our

knowledge they have never been applied to solve joint pre-

diction problems on document and words. Our goal is to

learn a real-valued sentiment-polarity score vector, fd, over

document vertices and fw over word vertices with the fol-

lowing properties: (a) If the ith document is labeled, fd
i

should be close to the ±1-valued label, (b) If the jth word

is labeled, fw
j should be close to the ±1-valued label and

(c) If the association between the ith document and the jth

word is strong, then fd
i and fw

j should be similar. It is im-

portant to note that the third property can be enforced also

over unlabeled documents and unlabeled words. It turns out

that the third property has close connections to the classical

SVD applied to document-term matrices (see [3] for more

details). These three properties can be enforced through the

terms of the objective function in the following minimiza-

tion problem,

argmin
fd,fw

1

ld

ld
∑

i=1

V (fd
i , yd

i ) +
1

lw

lw
∑

i=1

V (fw
i , yw

i )

+µ

n
∑

i=1

D
∑

j=1

Xij

(

fd
i − fw

j

)2
(1)

where V as before is a loss function, ld is the number of

labeled documents, lw is the number of labeled words, µ

is a real-valued parameter. We also assume that the first

ld documents in X of the n total are the ones that are

labeled. The third term can be shown to be a quadratic

form involving the graph Laplacian matrix L of G, i.e.,
∑D

j=1
Xij

(

fd
i − fw

j

)2
=

(

fd⊤fw⊤
)

L

(

fd

fw

)

. Here,

L = D−A where D is the diagonal degree matrix associ-

ated with A, i.e., Drr =
∑

s Ars. In particular, we use the

associated normalized Graph Laplacian [2] in our formula-

tions below, defined as L̃ = I−D− 1
2 AD− 1

2 . The solution

to Eqn. 1 can be obtained by solving a sparse linear system

(see [1] for details on Graph transduction in general).

Intuitive Interpretations: The transductive sentiment

scores obtained by solving Eqn. 1 may be interpreted in

different ways (see [1] for more discussion). The Ran-

dom walk interpretation is as follows. Imagine starting

from an unlabeled document i and walking to a word j in

it with probability
Xij

P

j
Xij

. Then, from j we walk to an-



other document k with probability
Xkj

P

k
Xkj

. Continuing in

this way bouncing between documents and words until a la-

beled node (document or word) is found, one can ask for

the probability p of terminating the random walk at a pos-

itive sentiment document or word. The score given to the

unlabeled document i is then 2p− 1. Similarly, the random
walk may be started from an unlabeled word to obtain a sen-

timent polarity score for that word. Another interpretation is

the following: Consider G to be an electric network. Imag-

ine connecting positive sentiment documents and words to a

positive voltage source (+1V) and negative sentiment doc-

uments and words to a negative voltage source (-1V). Let

Xij be the conductance (inverse of resistance) between a

document i and a word j. Then the sentiment score given to

an unlabeled document or a word is the resulting voltage at

that node in this electric network. Strictly speaking, these

interpretations hold when the scores for labeled nodes are

clamped at the labels while the third term in Eqn. 1 is min-

imized (this corresponds to the limiting solution of Eqn. 1

when µ → 0).
Other Smoothness Operators: The Laplacian matrix

L̃ defines a large family of smoothness operators on func-

tions defined over the vertices of the corresponding graph.

We point the reader to [11] for typical choices of graph-

regularizers. In subsequent discussion, we use M to denote

a generic graph regularizer derived from the Laplacian, typ-

ically in the form of a power series in L̃. We use iterated

Laplacians of the form M = L̃p where p is an integer pa-

rameter.

Out-of-Sample Prediction: Note that while fd,fw

provide sentiment polarity predictions for unlabeled docu-

ments and words, they do not provide a model that can be

applied to unseen test data. To obtain a linear model, we

propose a novel formulation that comprises of solving the

following minimization problem,

argmin
fd,fw,w

µ

2(n + D)

(

fd⊤fw⊤
)

M

(

fd

fw

)

+
1

ld

l
∑

i=1

V (fd
i , yd

i ) +
1

lw

l
∑

i=1

V (fw
i , yw

i )

+
1

2n

n
∑

i=1

(

w⊤xi − fd
i

)2
+

γ

2
‖w − νfw‖22 (2)

The first four terms are inspired by the transductive for-

mulation in Eqn. 1. The last two terms couple transductive

learning with a linear model. In particular, through these

terms we enforce the following: (a) the outputs produced

by the linear model on documents, w⊤xi, should be close

to the transductive solution on document vertices, fd
i , and

(b) the sentiment polarity of words as expressed through

fw should now effectively act as the non-zero prior for the

weights of the linear model.

Proposed Algorithm: Let yd denote the n × 1 la-

bel vector for documents with entry 0 for unlabeled doc-

uments. Similarly, let yw denote the D × 1 label vector

for words with entry 0 for unlabeled words (words not in

the sentiment lexicon). Choosing V to be the squared loss,

Eqn. 2 poses the problem of minimizing an unconstrained

quadratic. This reduces to solving the following linear sys-

tem of size (n + 2D)× (n + 2D):

Q





fd

fw

w



 =





1

ld
yd

1

lw
yw

0



 (3)

whereQ = µ
n+D

(

M 0
0 0

)

+





I 0 −X

0 0 0
−X⊤ 0 X⊤X



+

γ





0 0 0
0 ν2I −νI

0 −νI I



+diag( 1

ld
[yd 6= 0], 1

lw
[yw 6= 0], 0)

where the elements of [yd 6= 0] equal 1 for indices corre-
sponding to labeled documents and 0 otherwise. Above,

we use I and 0 to denote identity and zero matrices of ap-

propriate size. We solve the linear system in Eqn. 3 us-

ing the Conjugate Gradient (CG) method with a tolerance of

ǫ = 0.0001. Note that neither Q nor M need to be explic-

itly computed and stored. Rather, since CG only accessesQ

through matrix-vector multiplication of the form v = Qu,

we compute this product efficiently on the fly using just the

data matrix and the document-word label vectors. To ob-

tain the exact solution, theoretically n + D CG iterations

are needed. However, very high quality approximate solu-

tions are obtained extremely quickly (convergence depends

on the practical rank of Q) in practice. We call our ap-

proach Semi-supervised Lexical Regularized Least Squares

(SS+LEX+RLS) classification.

Advantages of the Proposed Algorithm: Unlike Trans-

ductive SVMs [5] our algorithm is based on convex opti-

mization and therefore does not suffer from local minima

issues. Unlike, typical graph-based methods which require

an expensive construction of a nearest neighbor graph, our

algorithm uses regularization operators defined on the bi-

partite document-word graph. Thus, there is no expen-

sive graph construction step. To the best of our knowl-

edge, our algorithm is the first semi-supervised method that

attempts to simultaneously implement cluster assumptions

along both dimensions of the data matrix and incorporates

both labeled examples as well as labeled features. Joint

document-word analysis has previously been explored in

the context of co-clustering in [3]. Our algorithm may be

seen as providing two additional capabilities on top of the

bipartite co-clustering approach: (a) semi-supervision for

both document and words, and (b) out-of-sample predic-

tions through a linear model.



4 Empirical Study

In order to test the generality of our approach we

experimented on three qualitatively different domains. We

used the MOVIES dataset provided by Pang et al. [7], which

consists of 1000 positive and 1000 negative review. We

also constructed two blog datasets as described below.

Lotus blogs: We created a data set targeted at detecting

sentiment around enterprise software, specifically per-

taining to the IBM Lotus brand. The LOTUS data set

consists of posts from 14 individual blogs, 4 of which are

actively posting negative content on the brand, with the

rest tending to write more positive or neutral posts. The

data was collected by downloading the latest posts from

each blogger’s RSS feeds, or accessing the blog’s archives.

A labeled set of 34 positive and 111 negative examples

was manually obtained. In addition, we also generated

an unlabeled set by randomly sampling 2000 posts from

a universe of 14,258 blogs that discuss issues relevant to

Lotus software.

Political candidate blogs: For our second blog domain,

we used data gathered from 16,742 political blogs, which

contain over 500,000 posts. A post was labeled as having

positive or negative sentiment about a specific candidate

(Barack Obama or Hillary Clinton) if it explicitly men-

tioned the candidate in positive or negative terms. The

manually labeled POLITICAL data set consisted of 49

positive and 58 negative posts. We created an additional

set of 2000 unlabeled examples, that were sampled from all

available posts from our political blogs. This unlabeled set

contains 1000 posts containing the term “clinton” and 1000

containing “obama” in their URLs.

Methodology: We compare the approaches proposed

in this paper: the lexical RLS (LEX+RLS) and the semi-

supervised lexical RLS (SS+LEX+RLS), to the following:

(a) unsupervised lexical classification (LEX) which gives

a baseline, (b) Linear SVMs which are considered state-

of-the-art for text classification, and (c) two implementa-

tions of the Transductive SVM [5, 10], one based on la-

bel switching (TSVM) and another based on deterministic

annealing (DA) [10]. We carefully tune the regularization

parameter for linear SVMs (in the range γ = c
l
where

c = {0.001, 0.01, 0.1, 1, 10, 100} and l is the number of

labeled examples) to optimize test performance. Therefore,

their performance reported here is meant to represent the

best possible results one can hope to obtain with a state-of-

the-art purely supervised learner. We report the best per-

formance of TSVM and DA over the parameter settings

used in [10]. Furthermore, TSVM and DA require an ac-

curate estimate of positive class fraction. In practical semi-

supervised settings, a noisy estimate of this fraction is ob-

tained from the labeled data. In our experimental setting,

Figure 1. Learning Curves
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(c) Performance on LOTUS

we confer an advantage to TSVM and DA by setting the

positive class fraction to the true value. For SS+LEX+RLS,

we need to set the following parameters: γ, µ, ν and p, the

degree of the iterated graph Laplacian M = L̃p. For all

datasets, we used p = 10. We used γ = 0.0001, ν =
1.0, µ = 10 for MOVIES and γ = 0.001, ν = 0.1, µ = 1
for both POLITICAL and LOTUS. A careful optimization of

these parameters may further improve the results presented

here. We generated learning curves averaged over 10 runs

of 10-fold cross-validation. In the semi-supervised setting

this experimental protocol needs more explanation. Let U

be the set of truly unlabeled examples in the dataset, as we

have in POLITICAL and LOTUS . Let L denote the labeled

set. In each of the 10 training-test splits in one run of 10-



fold cross-validation, we partition L into Ltrain and Ltest

in the ratio 9:1. Next we take only a subset Llab of Ltrain

as labeled data and study the effect of gradually increasing

the size of Llab. Semi-supervised algorithms are provided

(Ltrain − Llab) ∪ U as the unlabeled set. Supervised algo-

rithms only use Llab. The linear models given by various

algorithms are then evaluated on Ltest. The resulting learn-

ing curves are shown in Figure 1.

Results: It is clear from Figure 1 that by utiliz-

ing both lexical prior knowledge as well as unlabeled

data SS+LEX+RLS significantly outperforms all competing

alternatives on all datasets. As expected the smaller the la-

beled set, the larger the performance boost. On MOVIES,

we see that with 50 labeled examples the SVM, TSVM and

DA perform no better than the unsupervised lexical clas-

sifier. On the other hand, by simply combining these few

labeled examples with lexical information, LEX+RLS al-

ready gives better performance. Finally, by further includ-

ing unlabeled data SS+LEX+RLS gives by-far the best per-

formance. Similar observations hold on LOTUS and POLIT-

ICAL. Surprisingly, on those datasets TSVM and DA turn

out to perform worse than an SVM. Even if suboptimal lo-

cal minima issues for TSVM and DA are kept aside, when

labeled examples are extremely scarce the low-density sep-

arators found by these algorithms may not be sufficiently

constrained. We conjecture that the blogosphere consists

of clusters of bloggers focusing on similar sub-topics while

the range of topics is very diverse (e.g., “iraq war” versus

“health care“). This implies that without additional labeled

data or prior knowledge such as what the lexicon provides,

one may find good quality low-density decision boundaries

that end up better separating topical sub-clusters as opposed

to sentiment classes.

The unsupervised lexical classifier does not perform

well, particularly on MOVIES and LOTUS. The underlying

assumption of the Lexical Classifier is that a document is

positive if there are more positive lexicon terms than nega-

tive terms in a document. Apart from the fact that the lexi-

con does not cover all terms that may appear in our vocab-

ulary, it also does not capture domain-specific connotations

of a term. We claim that semi-supervised learning can radi-

cally update our knowledge about the sentiment polarity of

terms, beyond what can be captured by a limited labeled

set. We can support this claim by examining the elements

of our lexical background knowledge that have been altered

by our semi-supervised model. Such insight can be eas-

ily gathered by comparing the sentiment polarity score fw

with the lexical labels wlex. Below are the top 20 stemmed

lexicon terms for MOVIES sorted by −wlexi
fw

i for a model

trained with 400 labels and 1400 unlabeled examples; this

set constitutes the terms that have changed most dramat-

ically in sentiment: lone, origin, basic, show, revolut,

pretti, know, reason, hatr, doubt, captur, complet, com-

plex, talent, upset, secur, call, debat, critic, plain. This

analysis gives us some insight into the domain-specificity

of the sentimentality of certain terms, which is not possible

to encode into a single general-purpose lexicon. For exam-

ple, words such as revolution, capture and complex can

be associated with positive experiences in descriptions of

movies, though they may be generally considered negative

in other contexts. The down-weighting of positive lexicon

terms, such as talent for MOVIES is also consistent with the

“thwarted expectation” narratives that Pang et al. [7] ob-

served in this data.

5 Conclusion

We have proposed a general framework for incorporat-

ing lexical information as well as unlabeled data within

standard regularized least squares for sentiment prediction

tasks. Our methods and applications can be immediately ex-

tended to the following: (1) a variety of classification prob-

lems where partial supervision may be available in the form

of a few labeled examples and features, (2) a large choice of

loss functions such as those defining SVMs and logistic re-

gression, (3) additional graph structures on documents (e.g.,

in the form of web hyperlinks) and words (e.g, with edges

connecting synonyms) and (4) non-linear kernel-based gen-

eralizations (see [9]). These are topics of future research.

A longer version of this paper is available at http://vikas-

sindhwani.org/icdm08-sentiment.pdf.
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