
Sequential Operator Splitting for
Constrained Nonlinear Optimal Control

Vikas Sindhwani1 Rebecca Roelofs2 Mrinal Kalakrishnan3

Abstract— We develop TROSS, a solver for constrained non-
smooth trajectory optimization based on a sequential operator
splitting framework. TROSS iteratively improves trajectories
by solving a sequence of subproblems setup within evolving
trust regions around current iterates using the Alternating
Direction Method of Multipliers (ADMM). TROSS achieves
consensus among competing objectives, such as finding low-
cost dynamically feasible trajectories respecting control limits
and safety constraints. A library of building blocks in the form
of inexpensive and parallelizable proximal operators associated
with trajectory costs and constraints can be used to configure
the solver for a variety of tasks. The method shows faster cost
reduction compared to iterative Linear Quadratic Regulator
(iLQR) and Sequential Quadratic Programming (SQP) on
a control-limited vehicle maneuvering task. We demonstrate
TROSS on shortest-path navigation of a variant of Dubin’s
car in the presence of obstacles, while exploiting passive
dynamics of the system. When applied to a constrained robust
state estimation problem involving nondifferentiable nonconvex
penalties, TROSS shows less susceptibility to non-Gaussian
dynamics disturbances and measurement outliers in compar-
ison to an Extended Kalman smoother. Unlike generic SQP
methods, our approach produces time-varying linear feedback
control policies even for constrained control tasks. The solver is
potentially suitable for nonlinear model predictive control and
moving horizon state estimation in embedded systems.

I. INTRODUCTION

Let xt+1 = f (xt,ut) denote a deterministic discrete-time
nonlinear dynamical system with states xt ∈ Rn and controls
ut ∈ Rm. A trajectory τ over a time horizon T is a sequence
of state-control pairs (x0,u0,x1,u1, . . .xT−1,uT−1,xT).
We consider the following class of constrained optimization
problems over trajectory variables τ ∈ RmT+n(T+1),

argmin
τ∈C

c(τ), (1)

subject to: xt+1 = f (xt,ut) , t = 0 . . . (T − 1) (2)
τmin ≤ τ ≤ τmax (3)

Above, we seek a trajectory that minimizes the cost func-
tion, c(τ), while respecting the dynamics of the system
(Eqn 2), and satisfying other operational constraints. The
bound constraints in Eqn 3, may be imposed to keep control
inputs within physical limits of actuators and to guide the
evolution of states along specific waypoints in the state
space. More complex constraints may be encoded in the
set C in Eqn. 1. For example, in robot motion planning

1Google Brain, New York, USA sindhwani@google.com
2Dept. of Computer Science, Univ. of California, Berke-

ley CA, USA. Research done during Google internship.
roelofs@cs.berkeley.edu

3X, Mountain View CA, USA kalakris@x.team

problems, acceptable trajectories also need to avoid collision
with obstacles in the environment, and feasible states might
live on a nonlinear manifold (e.g., pose variables in SE(3)).
The cost function c is not necessarily convex, differentiable
or separable across time; the dynamics is typically highly
nonlinear, and the constraint set C may in general be non-
convex. The trajectory optimization problem above may be
instantiated for a given fixed initial state x̂0 in which case we
include the constraint x0 = x̂0, or the initial state might be
a free optimization variable, as is natural in state estimation
settings. In the context of robotics, the delicate interplay
between the geometry of the environment on one hand,
and nonlinear dynamics and physical limits of underactuated
systems on the other, makes optimization problems of the
above form highly challenging.

Differential Dynamic Programming (DDP) [13] and Itera-
tive Linear Quadratic Regulator (iLQR) [16] are among the
most effective methods for unconstrained optimal control
problems involving twice-differentiable time-separable cost
functions. They are variations of Newton’s method [7] and
belong to the family of shooting or indirect methods for
trajectory optimization where states are treated as implicit
functions of the control sequence, as opposed to explicit
optimization variables. At each iteration, a time-varying
Linear Quadratic Regulator (TV-LQR) subproblem is solved,
by linearizing the dynamics and constructing a quadratic
approximation to the cost function, yielding a direction along
which the current trajectory is updated via line search. DDP
also incorporates second order dynamics approximation in
this subproblem, while iLQR ignores it for efficiency. By
construction, these methods maintain dynamics feasibility at
each iteration and get their efficiency from linear time (in
T) Ricatti recursion solution to the TV-LQR problem. The
optimal controls are expressed in the form of locally linear
feedback control policies that can be used for robust closed
loop execution. An extension of iLQR for handling bound
constraints on control variables was proposed in [22].

When additional state and control constraints are intro-
duced, the problem is typically treated as an instance of
general nonlinear programming. In such “direct methods”,
state and control variables are jointly optimized in the
presence of dynamics satisfaction constraints. Sequential
Quadratic Programming (SQP) [23] or Sequential Convex
Programming (SCP) techniques, e.g., as implemented in
SNOPT [10] or TrajOpt [21] packages, are among the
preferred approaches for solving such problems. Constrained
problems cast in terms of an SQP lose the computational
efficiency of Ricatti recursions (though they can exploit

structure in the problem in the form of Jacobian and Hessian
sparsity), and only return an open loop sequence of controls
as opposed to feedback policies.

In this paper, we develop a sequential operator splitting
framework for solving constrained trajectory optimization
problems. Our framework, called TROSS (Trajectory Opti-
mization with Sequential Splitting) has the following fea-
tures:
• it does not require twice-differentiability of cost functions,

and can also optimize non-differentiable and non-time-
separable cost functions.

• its implementation is organized around a library of sim-
ple and parallelizable building blocks of projection and
proximal operators.

• unlike SQP techniques but like iLQR, TROSS returns
closed-loop locally linear feedback policies through a
proximal operator associated with a local LQR problem.

• we demonstrate TROSS on the following problems,
– A maneuvering task involving a car-like robot with

control limits. Here, we compare the performance
of TROSS against the control-limited variant of iLQR
developed in [22], and also against SQP and other
nonlinear programming methods.

– An obstacle avoidance problem involving navigation
of a Dubin-like car [6] demonstrating the ability
of TROSS to handle geometric safety constraints on
state variables together with sparsity inducing regulation
of controls for exploiting passive dynamics [17] of the
system.

– A state estimation [12] problem of reconstructing the
trajectory of a target from corrupted range measure-
ments recorded from a radar ground station [14]. Here,
we show that TROSS can optimize trajectories with
respect to non-smooth non-convex cost functions such
as the capped-l1 loss. On this problem, we include a
comparison with Extended Kalman Filtering (EKF).

TROSS may potentially also be well-suited to real-time
on-device applications of nonlinear model predictive con-
trol [8], [23] and moving horizon estimation requiring low-
to-medium precision. Its use as a flexible supervisor for
guided policy search [15] is another potential application
TROSS is a trust-region based approach that solves a

sequence of local constrained control subproblems using
operator splitting techniques, and in particular, the Al-
ternating Direction Method of Multipliers (ADMM) [2].
The application of ADMM techniques to optimal control
problems was proposed in [18] for time-separable convex
quadratic objectives and linear dynamics in the presence
of additional constraints and regularizers that admit simple
proximal/projection operators. Recently, [4] demonstrated
that ADMM can also often be remarkably effective for
minimizing convex objectives over specific classes of non-
convex sets. The TROSS framework may be viewed as a
natural extension of these efforts: we do not assume convex-
ity or separability of the cost function, and handle nonlinear
dynamics via iterative linearization. The cost function and
constraints may be replaced by local approximations that

admit an inexpensive proximal or projection operator. The
resulting subproblem is solved by ADMM in the presence
of a trust region constraint that enforces the region of
validity of these approximations. This subproblem need not
be convex and does not require very precise solutions. In
this splitting framework, cost minimization and constraint
satisfaction including dynamics feasibility, are separated al-
lowing a sequence of ADMM solves to attempt to bring
consensus between competing control objectives. In the outer
loop, the trust region radius is adjusted using the “filter”
strategy [9] which maintains a Pareto frontier of cost and
constraint satisfaction pairs, to decide whether to expand or
contract the trust region.

We start with a quick background on SCP techniques
and ADMM, and then introduce the TROSS framework.
Numerical results are presented in Section IV.

II. BACKGROUND

A. Sequential Convex Programming

Sequential Convex Programming (SCP) refers to a heuris-
tic strategy for solving general nonlinear programming prob-
lems via a sequence of convex minimization subproblems.
Suppose f : Rn 7→ R needs to be minimized subject to
equality constraints, h(x) = 0, and inequality constraints
g(x) ≤ 0, SCP constructs a proxy subproblem at each
iteration k, where the objective and constraint functions
are approximated by convex functions around the current
iterate xk. The validity of these approximations is assumed
to hold within a convex trust region T k, which is explicitly
included among the constraints. The convexification can be
done via linearization, or using second order Taylor approx-
imations with suitable Hessian modifications, or even build-
ing derivative-free regional convex models using regression
methods. If the solution to this subproblem yields progress
in terms of some measure of improvement in objective value
and constraint satisfaction, then the iterate is accepted as
the next step. Otherwise, the trust region is reduced and the
problem is resolved.

The practical implementation of SCP solvers requires
considerable care. In particular, it involves (1) choosing an
appropriate structure-exploiting solver for the convex sub-
problems and controlling its numerical stability and level of
precision, (2) properly adapting the trust region radius along
the optimization trajectory, and (3) handling infeasibility
that might be encountered if local convexification generates
incompatible constraints or if the trust region shrinks so
much as to prevent a feasible update. One way to avoid
infeasibility is to solve relaxed problems by introducing a set
of non-negative slack variables to the convexified objective
function [21].

B. Consensus ADMM

Consider optimization problems of form,

argmin
x

l∑
i=1

fi(x) + g(x) (4)

where each fi is a convex term in the objective, and g is
a secondary term representing a simple convex constraint
or regularization. A constraint set C may be encoded in
the above form by setting one of the cost terms to be the
associated indicator function denoted by 1C . The problem
may be equivalently rewritten in global variable consensus
form as follows,

argmin
x∈Rn

l∑
i=1

fi(xi) + g(x̄) (5)

xi = x̄, i = 1 . . . l (6)

Here, variables are split into l local copies each myopically
responsible for their associated cost reduction or constraint
satisfaction, with a requirement to eventually achieve con-
sensus with “global” variables x̄. The scaled form updates
of the ADMM [2] solver for this problem are as follows,

xj+1
i = proxρ,fi [x̄

j − λj0] (7)

x̄j+1 = proxlρ,g

[1

l

l∑
i=1

(xj+1
i + λji)

]
(8)

λj+1
i = λji + xj+1

i − x̄j+1, i = 1 . . . l (9)

where xi and λi denote primal and dual variables, j is the
iteration index, ρ > 0 is the ADMM penalty parameter, and
proxρ,f denotes the proximal operator associated with the
function f :

proxρ,f [x̂] = argmin
x

f(x) +
ρ

2
‖x− x̂‖22 (10)

The proximal operator for the indicator function of a con-
straint set C reduces to the projection operator,

projC [x̂] = argmin
x∈C

‖x− x̂‖22 (11)

At iteration j, the primal and dual residual norms, denoted
‖rp‖22, ‖rd‖22 respectively, turn out to be interpretable as
natural l2 measures of consensus:

‖rp‖22 =

l∑
i=1

‖xji − x̄j‖22, ‖rd‖22 = lρ2‖x̄j − x̄j−1‖22 (12)

For a feasible convex optimization problem, consensus
ADMM converges to the globally optimal solution. The
primal and dual residual norms, which can be used to
define appropriate stopping criteria, converge to zero. Under
certain conditions, convergence is also guaranteed for various
update orders, frequencies and inexactness of projections and
proximal operations. Furthermore, [20] show that ADMM
handles infeasible bound-constrained Quadratic Programs
gracefully: the primal iterates converge to a minimizer of the
Euclidean distance between the subspace defined by equality
constraints and the convex set defined by bounds. ADMM
has also been found to be effective for certain non-convex
problems [4], [24], typically those where proximal/projection
operators can be computed exactly despite non-convexity.

III. SEQUENTIAL OPERATOR SPLITTING

We rewrite the optimal control problem in Eqn. 1-3
compactly as,

argmin
τ

c(τ) + 1F (τ) + 1B(τ) + 1C(τ) (13)

where,
• F = {τ : xt+1 = f(xt,ut), t = 0 . . . (T − 1)} denotes

the set of trajectories that are dynamically feasible. The
initial state x0 may be prescribed for this set.

• B = {τ : τmin ≤ τ ≤ τmax} denotes trajectories that
respect the specified bound constraints

• C specifies additional trajectory constraints.
We now describe the TROSS solver. The method has an
outer SCP-like loop where at step k, we maintain a current
solution trajectory τk. We use the notation ukt ,x

k
t to denote

the control and state components of τk. Around, τk we
construct a control subproblem as follows.

First, in the neighborhood of τk, we approximately de-
compose the trajectory cost as follows,

c(τ) ≈ qk(τ) + q̄k(τ)

where qk is a time-separable quadratic, and q̄k is a non-
separable quadratic or non-quadratic piece of the approxi-
mation.

A local dynamics feasibility set Fk is defined through
linearization,

δxt+1 =
∂f

∂x
(xkt)δxt +

∂f

∂u
(ukt)δut + ct (14)

where δxt = xt−xkt , δut = ut−ukt and ct = f(xkt ,u
k
t)−

xkt+1.
The constraint set C may also be approximated by a set

Ck. For example, if C is defined through state inequality
constraints g(xt) ≤ 0, then Ck may be the polyhedral
approximation,

g(xkt) +
∂g

∂x
(xkt)δxt ≤ 0 (15)

Note that components of the cost function and constraint
set might be left as is if they already admit a fast and accurate
proximal operator.

Finally, each trajectory variable τi is associated with a
trust region radius µki (for simplicity, in our implementation,
we associate one radius for all control variables and one
radius for all state variables). We use box-shaped trust region
constraints, T k = {τ : |τi − τki | ≤ µki } though other trust
region geometries (e.g. spheres or ellipsoids) can also be
supported. These trust region constraints and the original
bound constraints can be clubbed together into the constraint
set Bk = B ∩ T k defined by,

max(τk − µk, τmin) ≤ τ ≤ min(τk + µk, τmax) (16)

.
The local subproblem can now be defined,

argmin
τ

[
qk(τ) + 1Fk(τ)

]
+ q̄k(τ)

+1Ck(τ) + 1Bk(τ) (17)

This is in the form of Eqn 4 where the first three terms
may be identified with fi’s and the last bound constraints
term may be identified with the function g. We now apply
the ADMM update equations in Eqn. 7-9 to solve the
subproblem. Using the notation qkFk = qk + 1Fk , these
updates take the following form for l = 3,

τ j+1
1 = proxρ,qk

Fk
[τ̄ j − λj1] (18)

τ j+1
2 = proxρ,q̄k [τ̄ j − λj2] (19)

τ j+1
3 = projCk [τ̄ j − λj3] (20)

τ̄ j+1 = projBk
[1

l

l∑
i=1

(τ j+1
i + λji)

]
(21)

λj+1
i = λji + τ j+1

i − τ̄ j+1, i = 1 . . . l (22)

If the solution returned by ADMM to this subproblem
shows sufficient improvement in cost reduction or constraint
satisfaction relative to the previous iterate, we accept the
step in the outer loop. We then proceed to construct a new
subproblem around the latest solution. The next ADMM
is warmstarted by the previous solution. If neither cost
nor constraint satisfaction improves significantly, the step is
rejected and the trust region radius is contracted. Because one
of the primal trajectories is associated with a time-varying
LQR problem (Eqn. 18), upon achieving near consensus, the
solution is accompanied by feedback gain matrices. As such,
DDP-style updates may be performed in the outer loop by
propagating states and controls through the original nonlinear
dynamics. Note that several variations on this theme are
possible with different choices for splitting, variable update
orders and choice of trust region geometry.

In subsection A, we describe a Ricatti recursion pro-
cedure to rapidly compute the proximal operator for the
time-varying linear quadratic control problem in Eqn.18
for changing inputs across ADMM iterations. In subsection
B, we collect some proximal operators for non-quadratic
and non-separable cost functions, Eqn. 19, for applications
demonstrated in this paper in section IV. The projection onto
state/control limits and trust region constraints is described in
subsection C. In subsection D, we briefly describe approxi-
mate projection operators, Eqn. 20, for obstacle avoidance
settings. Finally, subsection E briefly describes our trust
region adaptation strategy.

A. Proximal Operator for Time-Varying LQR

A second order Taylor approximation to a time-separable
trajectory cost function has the general form,

q(τ) =

T∑
t=0

(
1

2
xTt Qtxt + qTt xt

)
+ (23)

T−1∑
t=0

(
1

2
uTt Rtut + rTt ut

)
+ uTt Mtxt (24)

The domain of this approximation is restricted to trajectories
that satisfy linearized dynamics F = {τ : xt+1 = Atxt +
Btut + ct} where the initial state x0 might be fixed or

free. The proximal operator associated with this restricted
quadratic (denoted by qF), as required in Eqn. 18, is

proxqF ,ρ[τ̂] = argmin
τ∈F

q(τ) +
ρ

2
‖ρ− ρ̂‖22,

which is,

argmin
τ∈F

T∑
t=0

1

2
xTt (Qt + ρIn)xt + (qTt − ρx̂t)Txt

+

T−1∑
t=0

1

2
uTt (Rt + ρIm)ut + (rTt − ρûTt)Tut + uTt Mtxt (25)

where In denotes the n×n identity matrix. This computation
is simply a modified LQR problem, which may be solved
using classic Ricatti recursion. The complexity of a single
solve is O(T (m + n)3). In the context of using ADMM
updates in Eqn. 18, this proximal operator needs to be
repeatedly called for varying τ̂ . In this case, the cost can
be reduced to O(T (m+n)2) for each repeated solve after a
preprocessing step where certain factorizations can be cached
for a O(T (m+ n)3) one-time cost. Note that [18] consider
the same problem and sketch a sparse LDL factorization
based implementation. However, we prefer the Ricatti re-
cursion implementation since it also yields feedback gain
matrices, using which DDP-style trajectory updates may also
be performed and the final solution can be associated with
feedback control policies for closed loop execution.

Preprocessing Phase: Prior to starting ADMM updates,
we execute the following backward pass to preprocess and
cache the following quantities. These updates follow from
standard dynamic programming arguments, based on recur-
sively computing expressions for quadratic value functions.
• Set PT = QT + ρIn
• for t = (T − 1) . . . 0 (Backward pass)

Gt = [Rt + ρIm + BT
t Pt+1Bt]

−1 (26)
Kt = −Gt(B

T
t Pt+1At) (27)

Ut = At + BtKt (28)
Pt = Qt + ρIn + AT

t Pt+1Ut + MT
t Kt (29)

ft = BT
t Pt+1ct + rt (30)

gt = qt + AT
t Pt+1ct + KT

t ft (31)
(32)

Efficient Proximal Updates: For a given input to the prox-
imal operator τ̂ with control and state components ût, x̂t,
we compute:
• Set p = qT − ρx̂T
• for t = (T − 1) . . . 0 (Backward pass)

kt = −Gt(ft + BT
t p− ρūt)

p = gt − ρx̂t − ρKT
t ût + UT

t p (33)

The kt’s are stored, and then the following forward pass
yields the optimal controls,

u∗t = Ktxt + kt (34)
xt+1 = Atxt + Btut + ct (35)

The complexity of this proximal operator is T (3mn + m2)
flops. Note that the above computations may be performed
after a change of variables xt := xt−xkt with respect to the
current trajectory maintained in the outer loop of TROSS.

DDP-style updates: Upon convergence of the inner
ADMM solve, the primal trajectory associated with the time-
varying LQR is accompanied by the gain matrices Kt,kt.
Instead of propagating states and controls through linearized
dynamics in Eqn. 35, we can propagate them through the
original nonlinear dynamics as done in DDP, to update the
trajectory in the outer loop of TROSS. This can yield faster
overall convergence.

Initial State Optimization: If the initial state x0 is part
of the optimization, then after computing the last p corre-
sponding to t = 0 in the backward pass, we optimize the final
quadratic value function V0(x) = 1

2x
TPx + pTx. Hence,

x?0 = argmin
x

V0(x) = −P−1p (36)

where P,p are the final values of these variables during
caching and inference phases respectively.

B. Proximal Operators for Non-Quadratic and Non-
separable Costs

For cost functions that are weighted sum of stagewise non-
quadratic costs of the form, i.e.,

c(τ) =

T−1∑
t=0

αtct(ut) +

T∑
t=0

βtc
′
t(xt),

where αt, βt are weights, the proximal (abbreviated prox)
operator can be assembled by computing the proximal oper-
ators for each cost term independently and in parallel,

proxρ,c[τ̂] = [prox ρ
α0
,c0 [û0]; . . .prox ρ

βT
,c′T

[x̂T]]

Certain non-time-separable costs may also admit an efficient
proximal operator. We discuss some cases of interest for
trajectory optimization below, and point the reader to [19]
for broader overview of proximal operator computations.
• Exploiting Passive Dynamics: Passive dynamics of the

system can be exploited by encouraging the optimizer to
use sparse controls [17]. Control sparsity can be enforced
via l1 norm, ct(ut) = ‖ut‖1 whose prox operator is
solf-thresholding, proxρ,‖·‖1 [û] = max

(
û− ρ−1, 0

)
−

max
(
−u− ρ−1, 0

)
.

• Path Length and Curvature: Let pl(x1:T) = 1
2

∑T
t=1 ‖xt−

xt−1‖22 denote the path length cost over the state sequence.
Its proximal operator is given by, proxρ,pl[x̂1:T] =
T−1[x0; x̂T1:T] where T is a (T+1)×(T+1) banded ma-
trix with diagonal blocks Tii = (2+ ρ

2)I, i = 0 . . . (T−1)
and TT,T = (1+ ρ

2)I; and the blocks above and below the
main diagonal, Ti,i+1 and Ti+1,i, equal to −I. In addition
to path length, the planning of smooth paths with bounded
curvature arises in many settings [5]. The second order
difference cost associated with the Hodrick-Prescott (HP)
trend filter, hp(x1:T) =

∑T−1
t=1 ‖xt−1−2xt+xt+1‖22, is a

natural measure of curvature of a discrete state sequence.
This cost is zero if and only if the states evolve along

a linear path in the state space. The proximal operator is
exactly the HP filter computation for each state dimension
independently, which can be compactly expressed as,

proxρ,hp[x̂1:T] = vec

(
[x̂1 . . . x̂T](I +

2

ρ
DDT)−1

)
where D is the Toeplitz second-order difference matrix,
defined by its first row [1 − 2 1 0 . . . 0].

• Constrained Robust State Estimation: TROSS is applicable
also to state estimation settings where the dynamics is
perturbed by a disturbance sequence wt, i.e., xt+1 =
f(xt,ut) + wt. Likewise, sensor measurements, assumed
to be nonlinear functions of state, are perturbed with a
noise sequence vt, i.e., yt = h(xt)+vt. Both perturbation
sequences may be subject to physical constraints. For a
given fixed control sequence, ut, we get a constrained
maximum likelihood problem that can be interpreted as
an optimal control problem over xt and wt. Robustness
to measurement errors may be modeled via heavy-tailed
distributions, or non-convex loss functions with bounded
influence such as capped-l1 loss which also admits an
exact proximal operator despite non-convexity [11].

C. State/Control limits, and Trust Region Constraints

The projection of τ̂ onto the bound constraints Bk is
simply given entrywise by max(τki − µki , τmin,i) if τ̂i <
max(τki −µk, τmin,i), and by min(τki +µk, τmax,i) if τ̂i >
min(τki + µk, τmax,i), and by τ̂i otherwise.

D. Safety Constraints

Suppose the constraint set C over trajectories is described
by a set of K inequalities g(xt) ≤ 0, t = 1 . . . T certifying
safety of the state xt at time t, where g : Rn 7→ RK .
For example, g might measure a notion of safety mar-
gin with respect to K obstacles. The projection problem,
argminut,xt

∑T−1
t=0 ‖ut − ût‖22 +

∑T
t=1 ‖xt − x̂t‖22 subject

to g(xt) ≤ 0 reduces to the solution ût for the controls, and
separate projection problems, argminxt:g(xt)≤0 ‖xt − x̂t‖22
for each time-step independently. Upon linearization at xkt
(the state at time t for the trajectory τk), we obtain the
polyhedral constraint set of the form in Eqn. 15. Note that
this linearization is done in the outer loop. The inner ADMM
solver simply projects onto this polyhedral set to locally
bring states within safe margin from the obstacles. This
projection problem is a QP which can be solved efficiently in
the dual by caching the K×K gram matrix ∂g

∂x (xkt) ∂g∂x (xkt)T

(see [19], section 6.2). Such safety constraints can be setup
by bounding the system and its environment in tight fitting
volumes and computing geometric measures of separation
and penetration between them. We omit details for lack of
space, but demonstrate an example with ellipsoidal bounding
volumes in Section IV. Our solver can also be interfaced with
collision checkers in physics engines like Bullet [1].

Another approach to obstacle avoidance is to decompose
the environment into a union of convex free-space regions
via techniques like IRIS [3]. A finite union of convex
regions is in general nonconvex, but admits exact projection

by projecting onto each region separately and taking the
minimum.

E. Trust-region Adaptation via Filters

Constrained optimizers like TROSS attempt to make
progress along two goals: cost reduction and constraint satis-
faction. Filter methods [9], initially developed in the context
of SQP techniques as a practical alternative to penalty based
merit functions, track these two objectives separately and use
the concept of domination from multi-objective optimization
to maintain a Pareto frontier. If the inner ADMM yields a
trajectory update whose cost and constraint satisfaction is
acceptable to the filter (i.e., it is better than past iterates
in either respect), the update step is accepted, the filter
is updated, and the trust region is expanded for the next
subproblem. Otherwise, the step is rejected, the trust region
is contracted, and the current problem is resolved. Note that
in this case, the preprocessing for TV-LQR proximal operator
(subsection A) can be reused.

IV. NUMERICAL RESULTS

We now study the numerical behaviour of TROSS on three
constrained nonlinear optimal control problems.

A. Car Parking with Control Limits

In this task, studied in [22], a car is described by a 4-
dimensional state vector: x = (px, py, θ, v) where (px, py)
is the position of a point midway between the back wheels,
θ is the angle of the car relative to the x-axis, and v is
the velocity of the front wheels. The front wheel angle ω
and the front wheel acceleration a are the control inputs,
with limits ±0.5 radians, and ±2.0 meters-per-second-square
respectively. The car needs to be maneuvered from a starting
state x = 1, y = 1, θ = 3π

2 , v = 0 to a parking goal state,
x = 0, y = 0, θ = 0, v = 0. The discrete-time dynamics of
this system is given by,

xt+1 = xt +


b(v, ω)cos(θ)
b(v, ω)sin(θ)

sin−1
(
sin(ω)f(v)d−1

)
ha


where d = 2.0 is the distance between the front and
back axles; f(v) = hv and b(v, ω) = f(v)cos(ω) +
d −

√
d2 − f(v)2sin2(ω) (with Euler integration step size

h = 0.03) are the rolling distances of the front and back
wheel respectively. To be able to use iLQR with a robust
state cost function, Tassa et. al. [22] consider a twice
differentiable approximation to the Huber loss, the so-called
pseudo-Huber loss: h(x; p) =

√
x2 + p2 − p, for a given

parameter p. The pseudo-Huber loss resembles a quadratic
in a p-neighborhood around the origin, and is nearly linear
thereafter. Figure 1 shows various non-smooth loss functions
typically used in the robust statistics [12]. In this problem, the
non-terminal state cost is ct(x) = h(x1; 0.1)+h(x2; 0.1), t <
T , the terminal state cost is cT (x) = h(x1; 0.1)+h(x2; 0.1)+
h(x3; 0.01)+h(x4; 1.0), and the control cost is 1

2u
T
t Rut for

R = diag(0.01, 10−4). TROSS is run with ρ = 0.01 and

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5

3

3.5

4

co
st

(x
)

quadratic: kxk2
2

pseudo-huber:
p

kxk2
2 + p2 ! p

huber:
kxk2

2

2p if kxk2 <= p, kxk2 !
p
2 otherwise

l1: kxk1

capped-l1:
P

i min(jxji; 3)

Fig. 1. Robust cost functions. Unlike iLQR, TROSS can directly optimize
non-differentiable cost functions.

DDP-style updates, for 50 outer iterations each with just 5
ADMM inner iterations. The initial state and control trust
region radii are set to 1.0, with maximum allowed values
of 8.0 and 2.0 respectively. The time horizon is T = 500.
The trust region expansion and shrinkage factors are 2.0 and
0.5 respectively. The controls are initialized randomly by
drawing front wheel angles and accelerations independently
from a Gaussian distribution with variance 0.01. The same
initial controls are used to initialize iLQR, and MATLAB
fmincon’s SQP and active-set based nonlinear programming
solvers. We used a publicly available iLQR implementation
provided by the authors of [22]. Results are in Figures 2
and 3. The following observations can be made.
• As a function of both iterations and time, TROSS reduces

cost faster than iLQR iterations, see Figure 3. Both iLQR
and TROSS are significantly faster than general purpose
nonlinear programming solvers, which took more time for
a single iteration than iLQR and TROSS take to solve the
entire problem.

• Both iLQR and TROSS reach a final cost of 1.905 on this
problem. However, their optimal car parking maneuvers,
as shown in left and middle plots in Figure 2, are very
different suggesting that the optimizers follow different
descent paths in the cost landscape. The TROSS optimal
controls, shown in the right plot of Figure 2, respect the
control limits as desired.

• Interestingly, solving the ADMM subproblem more ex-
actly by increasing the number of inner iterations (e.g., to
10) slowed the cost reduction rate per iteration.

• The right plot of Figure 3 shows how the state and control
trust region radius varies during the TROSS optimization.
TROSS shrinks the trust region in the middle stages of
the optimization. Also shown is how the iLQR stepsize,
as found by backtracking line search, varies across its it-
erations: very small steps are taken in the middle stages of
the optimization. Overall, TROSS makes faster progress.

Both iLQR and TROSS linearize the dynamics and build a
quadratic approximation to the cost function in the neigh-
borhood of the current trajectory in exactly the same way.
However, they differ in the following respects. The Linear
Quadratic Regulator (LQR) subproblem is solved exactly in
iLQR yielding a search direction along which backtracking
line search is performed. By contrast, TROSS solves a

https://www.mathworks.com/matlabcentral/fileexchange/52069-ilqg-ddp-trajectory-optimization

50 100 150 200 250 300 350 400 450 500
Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tro
ls

front wheel angle

front wheel acceleration

Fig. 2. iLQR (left) and TROSS (middle) Car Parking Trajectories; TROSS Optimal controls (right) respecting operational limits.

0 10 20 30 40 50
Iterations

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

C
o

st

iLQR
TROSS (5)
TROSS (20)
ACTIVE-SET
SQP

0 20 40 60 80 100
Time (secs)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

C
o
st

iLQR
TROSS (5)
TROSS (20)

0 50 100 150 200
Iterations

10 -3

10 -2

10 -1

10 0

10 1

iLQR line search step size (,)
TROSS control trust region radius
TROSS state trust region radius

Fig. 3. Cost function improvement with respect to iterations (left) and time (middle); Trust region adaptation (right) during optimization.

constrained LQR subproblem setup within a trust region
around the current iterate. This subproblem need not be
solved exactly; just a few ADMM iterations suffice for
yielding an improved iterate. Note that in the car-parking
problem, a quadratic approximation to the pseudo-Huber loss
function is accurate only in a small neighborhood of the
origin which TROSS explicitly attempts to respect.

B. Dubin’s Car Navigation: Obstacle Avoidance and Passive
Dynamics

The Dubin’s [6] car is a classic nonlinear system studied in
optimal motion planning and control of mobile robots. Here,
we consider a Dubin-like vehicle whose dynamics is given
by,

dx

dt
= f(x,u) =

 ẋ
ẏ

θ̇

 =

 −v sin(θ)
v cos(θ)

u


where x, y is the two-dimensional position of the vehicle
in the environment, v = 1 meters per second is the fixed
speed of the vehicle, θ is the yaw angle (angle wrt y-
axis), and u is the control input. In other words, the car
moves at constant velocity and control can only influence
the orientation. Thus its zero-control passive dynamics can
be exploited to make progress towards the goal. We discretize
the dynamics using Euler’s method with a step size of 0.02
and control is applied for 0.1 seconds. The task is to navigate
the car from position x = −3, y = −3 and pose θ = 0,
to the goal x = 9, y = 9 returning back to the pose
θ = 0, in a time horizon of 10 seconds corresponding to
T = 100. The body of the car is modeled by fitting a min-
imum volume ellipsoid to the points (±1, 0), (0,−2), (0, 1).
The environment comprises of 3 obstacles with ellpsoidal
bounding volumes, a(x − cx)2 + b(y − cy)2 ≤ 1, centered

at locations (cx, cy) = (0, 5), (5,−2.5) and (0,−0.5), with
semi-axes lengths (a, b) = (0.03, 0.09), (0.6, 0.2), (0.4, 0.2)
respectively. The task is to minimize path length plus l1 norm
of controls,

∑T−1
t=0 ‖xt+1− xt‖22 + β‖u‖1 subject to vehicle

dynamics, goal constraints, and obstacle avoidance with a
user-specified safety margin. The shortest path navigation
requires the vehicle to curve around the obstacle until its
pose changes by 90 degrees, and then reorient itself near the
goal to be back at θ = 0. The l1 penalty term on control
inputs encourages controls from being turned off if progress
towards the goal can be made by relying on passive dynamics
of the system. The trajectories and associated sparse controls
estimated by TROSS on this problem are shown next. It
can be seen that control inputs are only used for the initial
turn and then to curve (bold shaded) just enough around
the obstacle. The “cruise-control” part of the trajectory is
piecewise linear (lightly shaded).

0 20 40 60 80 100
Time

-2

-1

0

1

2

3

4

5

6

Co
ntr

ol
Ma

gn
itu

de

l2 penalized
l1 penalized (6=10)

Fig. 4. Cruise Control: (left) The control is switched off for lightly shaded
segments. (right) control inputs with or without sparsity constraints.

C. Robust State Estimation

Here we consider a benchmark robust filtering problem
described in [14] involving tracking the trajectory of a body
falling through an atmosphere with exponentially decaying
density and uncertain aerodynamics, based on corrupted

radar measurements. Ignoring gravitational acceleration, the
discrete-time dynamics is written as,

xt+1 = f(xt,ut) = xt + h

(
−x2

−γx2
2e
−ηx1

)
+ ut

where γ, η a constants; the state vector comprises of the
altitude x1, and downward velocity x2, and variables u ∈ R2

encode additive dynamics noise. The task is to estimate the
trajectory of the body from noisy radar distance measure-
ments yt = g(xt) =

√
b2 + (x1t − a)2 where (b, a) are

coordinates of the radar (see [14] for details). We consider a
joint state evolution and measurement model whose discrete-
time dynamics evolves as,

x̃t+1 =

(
xt+1

yt+1

)
=

(
f(xt,ut)
g(f(xt,ut))

)
.

For a sequence of measurements ŷt, we consider the tracking
cost ct(x̃t) = 0.01l̂1(x̃3 − ŷt) where l̂1(x, θ) = max(|x|, θ)
is chosen to be the capped-l1 loss which is non-smooth
and non-convex (see Figure 1) and caps the influence of
a measurement residual at 0.25. Despite non-convexity, the
capped-l1 loss admits an exact proximal operator [11]. We
impose l1 penalty on dynamics noise. A trajectory of length
T = 600 (h = 0.1) is generated from the system by perturb-
ing states and measurements with random non-Gaussian dis-
turbances drawn from a half normal distribution |N (0, 0.01)|
and truncated normal distribution max(N (0, 1.0), 0) respec-
tively. Around 40% of the trajectory is subject to such
noise. We run TROSS with ρ = 1, 40 outer and 25 inner
iterations, with initial state and control trust region radius set
to 1.0. Non-negativity constraints are also imposed on the
state variables. State estimation comparisons against a tuned
Extended Kalman Filter (EKF), which makes strong Gaus-
sianity assumptions on dynamics and measurement noise,
are shown in Figure 5. An EKF-based forward-backward
smoother also gives similar results. TROSS with capped-l1
loss effectively ignores outlier measurements and provides
better state estimates.

Fig. 5. Robust State Estimation

V. CONCLUSIONS AND FUTURE WORK

Sequential splitting is an effective approach for highly con-
strained nonlinear control problems. Its application to MPC,
moving horizon estimation and guided policy search [15],
together with benchmarks against SQP methods and existing
trajectory optimizers are avenues for future developments.

ACKNOWLEDGEMENTS

We thank Alexander Herzog, Sergey Levine, Benjamin
Recht, Katya Scheinberg, Yuval Tassa and Vincent Van-
houcke for helpful technical discussions.

REFERENCES

[1] Bullet Physics Library. http://bulletphysics.org.
[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-

timization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3, 2011.

[3] R. Deits and R. Tedrake. Computing large convex regions of obstacle-
free space through semidefinite programming. Workshop on the
Algorithmic Fundamentals of Robotics,, 2014.

[4] S. Diamond, R. Takapoui, and S. Boyd. A general system for heuristic
solution of convex problems over nonconvex sets. arXiv preprint
arXiv:1601.07277, 2016.

[5] Y. Duan, S. Patil, J. Schulman, K. Goldberg, and P. Abbeel. Planning
locally optimal, curvature-constrained trajectories in 3d using sequen-
tial convex optimization. ICRA, 2014.

[6] L. E. Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents. American Journal of Mathematics, 79, 1957.

[7] J. C. Dunn and D. P. Bertsekas. Efficient dynamic programming
implementations of newton’s method for unconstrained optimal control
problems. JOURNAL OF OPTIMIZATION THEORY AND APPLICA-
TION, 63(1), 2013.

[8] M. M. F. Borrelli, A. Bemporad. Predictive Control for linear and
hybrid systems. http://www.mpc.berkeley.edu/mpc-course-material,
2015.

[9] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty
function. Mathematical Programming, 2002.

[10] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM Rev, 47(1), 2006.

[11] P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye. A general iterative
shrinkage and thresholding algorithm for non-convex regularized op-
timization problems. International Conference on Machine Learning
(ICML), 2013.

[12] P. Huber and E. M. Ronchetti. Robust Statistics. Wiley (2nd Edition),
2009.

[13] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming.
Elsevier, 1970.

[14] C. Karlgaard and H. Schaub. Comparison of several nonlinear filters
for a benchmark tracking problem. AIAA Guidance, Navigation, and
Control Conference and Exhibit, 2006.

[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of
deep visuomotor policies. JMLR, 17(39), 2016.

[16] W. Li and E. Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. International Conference on
Informatics in Control, Automation and Robotics, 2004.

[17] M. Nagahara, D. E. Quevedo, and D. Nesic. Maximum hands-
off control: A paradigm for control effort minimization. IEEE
Transactions on Automatic Control, 16(4), 2016.

[18] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method
for optimal control. IEEE Trans. on Control Systems Tech., Nov 2013.

[19] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends
in Machine Learning, 1, 2014.

[20] A. U. Raghunathan and S. D. Cairano. Infeasibility detection in alter-
nating direction method of multipliers for convex quadratic programs.
IEEE 53rd Annual Conference on Decision and Control (CDC), 2014.

[21] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, S. P. Henry Bradlow,
Jia Pa and, K. Goldberg, and P. Abbeel. Motion planning with sequen-
tial convex optimization and convex collision checking. International
Journal of Robotics Research, June 2014.

[22] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential
dynamic programming. International Conference on Robotics and
Automation (ICRA), 2014.

[23] M. J. TENNY, S. J. WRIGHT, and J. B. RAWLINGS. Nonlinear
model predictive control via feasibility-perturbed sequential quadratic
programming. Computational Optimization and Applications, 28(1),
2004.

[24] Y. Wang, W. Yin, and J. Zeng. Global convergence of admm
in nonconvex nonsmooth optimization. UCLA CAM Report 15-62
(http://arxiv.org/abs/1511.06324), 2016.

http://bulletphysics.org

	INTRODUCTION
	Background
	Sequential Convex Programming
	Consensus ADMM

	Sequential Operator Splitting
	Proximal Operator for Time-Varying LQR
	Proximal Operators for Non-Quadratic and Non-separable Costs
	State/Control limits, and Trust Region Constraints
	Safety Constraints
	Trust-region Adaptation via Filters

	NUMERICAL RESULTS
	Car Parking with Control Limits
	Dubin's Car Navigation: Obstacle Avoidance and Passive Dynamics
	Robust State Estimation

	Conclusions and Future Work
	References

