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ABSTRACT
As massive repositories of real-time human commentary, so-
cial media platforms have arguably evolved far beyond pas-
sive facilitation of online social interactions. Rapid analysis
of information content in online social media streams (news
articles, blogs,tweets etc.) is the need of the hour as it allows
business and government bodies to understand public opin-
ion about products and policies. In most of these settings,
data points appear as a stream of high dimensional feature
vectors. Guided by real-world industrial deployment scenar-
ios, we revisit the problem of online learning of topics from
streaming social media content. On one hand, the topics
need to be dynamically adapted to the statistics of incom-
ing datapoints, and on the other hand, early detection of
rising new trends is important in many applications. We
propose an online nonnegative matrix factorization frame-
work to capture the evolution and emergence of themes
in unstructured text under a novel temporal regularization
framework. We develop scalable optimization algorithms for
our framework, propose a new set of evaluation metrics, and
report promising empirical results on traditional TDT tasks
as well as streaming Twitter data. Our system is able to
rapidly capture emerging themes, track existing topics over
time while maintaining temporal consistency and continuity
in user views, and can be explicitly configured to bound the
amount of information being presented to the user.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and RetrievalRetrieval Models

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Over the last few years, the growth and ease of internet

access accompanied by the advent of various facets of online
social media viz. blogs, social networks and lately, twitter,
has provided a vast continuous supply of dynamic diverse
information content. When analyzed with appropriate sta-
tistical and computational tools, social media content can
be turned into invaluable scientific and business insights.
A recent large-scale study [9] of 500 million tweets gener-
ated in 2009, for example, concluded that the appearance of
flu-related topics in Twitter was highly predictive of future
influenza rates in the general population.

While the early years of social media platforms were fo-
cussed on developing software infrastructure for connecting
people, the emphasis has only very recently begun to shift to-
wards understanding collective public opinion by using deep,
data-driven social media analytics [21]. One of the most ba-
sic and necessary tasks that arises in this setting is to or-
ganize streaming social media into coherent threads of dis-
cussion that can be easily analyzed and utilized to improve
various services that are affected by social media. In this pa-
per, we argue that traditional topic detection and tracking
methodologies historically rooted in Information Retrieval
literature need to be revisited in the context of the demands
of these emerging applications.

Over regular intervals of time (which might be per day or
even every few hours), any user who is continuously mining
social media content, has the following natural expectations
from the system: (1) to be alerted to any new emerging
themes of discussion that is fast gathering steam in social
media, (2) to be able to follow the evolution of existing top-
ics that have already been identified as being of particular
interest and (3) not to be overloaded with excessive bits of
information that is time consuming to sift through. Several
tradeoffs become naturally evident in the design of a sat-
isfactory system. By definition, an emerging theme is one
that has not been observed before and is somewhat of an
anomaly in the data stream, not necessarily distinguishable
from noise when first encountered. Yet, not every anomaly
can be presented to the user as an “early warning” as this
would lead to excessive information overload in a large-scale
setting. At the same time, information presented in the past
sets up expectations for what the user expects in the future,
e.g., the ability to clearly see how a topic has evolved pos-
sibly in response to marketing or PR interventions. What
is needed, is an ability to distinguish valid emerging top-
ics (with steep information content) from “noise” and some
method to continuously summarize essential data character-



istics in terms of a small number of human interpretable
components.

Several social media monitoring tools rely on communicat-
ing individual keywords whose usage has rapidly increased in
recent time, as proxies for emerging topics. Such a method-
ology has obvious limitations in characterizing the separate
strands of conversations that may have simulatenously Jo-
emerged in the data stream. In this paper, we describe a
system for online analysis of streaming text using more rig-
orous machine learning and optimization methodologies in
the form of powerful topic modeling and non negative ma-
trix factorization techniques. Unlike previously proposed
IR techniques, our approach incorporates special algorith-
mic constructs to attempt to detect emerging topics early,
maintains temporal continuity while evolving existing topics
in response to the statistics of incoming data, and allows the
amount of information being presented to the user to be ex-
plictly configured. While we demonstrate these ideas in the
context of online topic modeling, our methods apply much
more broadly to early detection problems in more general
signal separation and decomposition settings. A preliminary
version of this work appeared in the NIPS 2010 workshop
on Social Computing.

2. RELATED WORK AND OVERVIEW
Over the last decade, different methods have been used for

topic modeling and detection from a corpus of documents
available as a batch or an online stream. Early impetus in
this research was provided by DARPA sponsorship of Topic
Detection and Tracking evaluations which led to the design
of several TDT engines [26, 1]. One of the best performing
engines, GAC-INCR [26], uses a clustering algorithm (GAC)
to cluster incoming new data in the first phase, and then,
based on a similarity/novelty threshold, either merges each
of these clusters with those discovered in the past or treat
them as a new cluster/topic to be tracked going forward.

Probabilistic latent semantic indexing (pLSI) [16] and La-
tent Dirichlet Allocation (LDA) [5] are probabilistic meth-
ods that have found remarkable success in building topic
models of text. Both of them characterize topics as a multi-
nomial distribution over a vocabulary of words rather than
clusters of documents. The topics are treated as latent vari-
ables and the joint probability of the terms and documents is
represented as the mixture of conditional probabilities over
the latent topics which are typically inferred by maximum
likelihood or Bayesian procedures that involve either varia-
tional inference or Gibbs sampling techniques. The notion of
a “topic” is then communicated to a user via keywords that
have highest mass in these learnt distributions.The two mod-
els are essentially equivalent [12], the key difference being
that while the PLSI approach may be viewed as maximum
likelihood estimation of model parameters, LDA applies a
Dirichlet prior on them. Variants of pLSI and LDA have
been proposed for online and dynamic topic modeling (see
[6, 13, 15, 4, 2] and references therein).

Another line of seemingly unrelated work which finds use
in topic modeling is that of dictionary learning and non-
probabilistic matrix factorizations[20]. Dictionary Learning
is the problem of estimating a collection of basis vectors
over which a given data collection can be accurately recon-
structed, often with sparse encodings. It may be formu-
lated in terms of uncovering low-rank structure in the data
using matrix factorizations possibly with sparsity-inducing

priors [20]. These are closely related to probabilistic topic
models (pLSI, LDA) for textual datasets.

In this paper, we propose a framework for online topic de-
tection to handle streaming non-negative data matrices with
possibly growing number of components. Our methods are
rooted in non-negative matrix factorizations (NMF) [18, 25]
whose unregularized variants for (generalized) KL-divergence
minimization can be shown to be equivalent to pLSI [10].
For squared loss, NMF finds a low-rank approximation to a
data matrix X by minimizing the Frobenius norm of ‖X −
WH‖2fro under non-negativity and scaling constraints on
the factors W and H. Finding the minimum rank NMF of
X is a non-convex problem and the general algorithm used
is due to the multiplicative weight methods of [18]. It is
common to add some form of l1/l2 regularization, generally
to encourage sparse factors and prevent overfitting. If X
is an N × D document-term matrix, then W is a N × K
matrix of topic encodings of documents where each column
corresponds to a topic and represents the contribution of
the documents to the particular topic. H is a K×D matrix
of topic-word associations, whose rows are the dictionary
elements learnt by the NMF approach.

Figure 1: A snapshot of the online NMF system for
tracking and capturing topics
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We give a preview of our online learning framework in
Figure 1. At any given timepoint, our system consumes the
incoming data together with recently seen documents over a
short time window. The output is an NMF that yields a new
set of topics together with encodings for the most recently
seen documents. These topics can be divided into two sets,
which we call evolving and emerging sets. The evolving set is
a smooth evolution of previously discovered topics. This evo-
lution is constrained to prevent excessive drift or change that
can negatively affect user interpretability. The emerging set
comprises of a small number of topics injected into the model
for the purpose of detecting emerging themes. This is done
by finding the optimal word distributions that show rising
temporal trends after correcting for spurious discontinuities.
We show that constrained topic evolution and trend estima-
tion can be posed naturally as extended matrix factoriza-
tion problems that infact also have a link to margin-based



learning methods such as SVMs. We then develop scalable
alternating optimization algorithms using efficient schemes
to solve rank-one subproblems. Once the online model is
learnt, the emerging set (whose size can be configured) is
presented to the user who may choose to explicitly discard
a subset from current consideration. Going forward in time,
the emerging set becomes part of the evolving set, and new
emerging bandwidth is introduced for the next timepoint.
The use of explicit temporal regularizers for emerging topic
detection in a matrix factorization framework in this man-
ner is novel to the best of our knowledge. Prior work on
online matrix factorization has not dealt with low-rank ap-
proximations with gradually increasing rank. In the next
section, we describe the details of our online models.

Notation: In the sequel we abuse notation to denote hi
as the ith row of H and hij = Hij . ∆D denotes the D
dimensional simplex. [K] refers to the set {1, 2 . . .K} and
0d,1d refers to the vector of all 0’s and 1’s of dimension d.

3. DYNAMIC NMF FRAMEWORK
Let {X(t) ∈ RN(t)×D(t), t = 1, 2...t, ..} denote a sequence

of streaming matrices where each row of X(t) represents an
observation whose time stamp is t. For simplicity in nota-
tion and exposition, we will assume that D(t) = D for all
t. In topic modeling applications over streaming documents,
X(t) will represent the highly sparse document-term matrix
observed at time t 1. We will use the conventional vector
space model [23] used in the information retrieval literature.
Terms in a document are statistically weighted using stan-
dard measures Term Frequency(TF ) and Inverse-Document
Frequency(IDF ). The (d, r)-th entry of X(t) corresponding
to document d and term r is given by

X(t)(d, r) =
(1 + log2 TF (d, r))× log2 IDF (r)

C

where C normalizes the representation to unit norm l2 norm
vectors. We use X(t1, t2) to denote the document-term ma-
trix formed by vertically concatenating {X(t), t1 ≤ t ≤ t2}.
Since we operate in an online framework, we introduce a
short sliding time window ω over which trends are estimated
at every time point.

At the current time point t, our model consumes the in-
coming data X(t) and appends to documents seen in a re-
cent ω-window, X(t− ω + 1, t). It generates a factorization
(W?,H(t)) comprising of K(t) topics (see equation (1)).
Each column of W? and each row of H(t) corresponds to
a topic. Note that W? has the same number of rows as all
the documents accumulated over the ω-window ending at
time point t. The last N(t) rows of W?(corresponding to
X(t)) represent the weight matrix W(t) at time t. Further-
more, since H(t) is the matrix of topic-term dependence at
time t, we normalize each row of H(t) so that it resembles
a probability distribution of words over the corresponding
topic. This online factorization mechanism is designed to
satisfy two considerations:

• The first K(t− 1) topics in H(t) must be smooth evo-
lutions of the K(t− 1) topics found upto the previous

1As new documents come in and new terms are identified, we
expand the vocabulary and zero-pad the previous matrices
so that at the current time t, all previous and the current
documents have a representation over the same vocabulary
space.

time point in H(t − 1). These topics are assumed to
be gradually changing over time (with steady temporal
profile). We call this the evolving set and introduce an
evolution parameter, δ, which constrains the evolving
set so that each entry of these K(t− 1) topics in H(t)
resides within a box of size δ on the probability simplex
around their previous values in H(t− 1) (see equation
(4)). With minor modifications, δ can also be made
topic or word-specific e.g., to take topic volatility or
word dominance into account.

• The second consideration is the fast detection of emerg-
ing topics. At each time point, we inject additional
topic bandwidth for this purpose which constitute the
K(t) −K(t − 1) remaining rows of H(t). This repre-
sents the emerging set.

Thus the topic variable H(t) can be partitioned into an
evolving set of K(t− 1) topics, Hev, and an emerging set of
Kem topics Hem where K(t) = K(t − 1) + Kem. It should
be noted that the set Hev is an increasing set over time.
Older topics that are no longer active may be removed for
efficiency, but for simplicity, we do not discuss such a re-
moval process in this paper. As new discussions take place
over social forums, new topics emerge and are added to the
system. Furthermore, we assume that emerging topics can
be distinguished from noise based on their temporal profile.
In other words, the number of documents that a true emerg-
ing topic associates with rapidly increases. This may occur
due to a sudden large increase in discussions about the topic
in documents over time.

The discussion above motivates the following objective
function that is optimized at every time point t.

(W?,H(t)) = argmin
W,H

‖X(t− ω + 1, t)−WH‖2fro + µΩ(W)

(1)

where Ω plays the role of a temporal emergence regularizer
(described in section 4) which penalizes static temporal pro-
files and encourages the discovery of topics whose temporal
profiles exhibit steep increase. These intuitively correspond
to the emerging topics. This objective function is minimized
under the following non-negativity, normalization and evo-
lution constraints as discussed above.

W,H ≥ 0 (2)

D∑
j=1

Hij = 1 ∀i ∈ [K(t− 1) +Kem]

(3)

min(Hij(t− 1)− δ, 0) ≤ Hij ≤ max(Hij(t− 1) + δ, 1),
(4)

∀i ∈ [K(t− 1)], ∀j ∈ [D]

The last equation (4) enforces the smoothness condition for
the evolving topics Hev by forcing the individual topic com-
ponents at time t to stay within δ of their value at the pre-
vious time step.

We then extract W(t) from the bottom rows of W? that
correspond to X(t) which came in at time t. Since W(t)
stores the weights assigned to each topic by the documents,
the ith document (row) in X(t) is tagged in the following
way:

πsystem(i) = argmax
j

W(t)(i, j) (5)
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. Thus each document at time t is assigned to the corre-
sponding most dominating topic by the system. Note that
this gives a clustering of the documents per topic. In the
next section, we define the emergence regularization oper-
ator Ω(W) that forms an essential component of our opti-
mization algorithm.

4. EMERGENCE REGULARIZATION
In this section, we formulate the temporal regularization

operator Ω(W) by chaining together trend extraction with
a margin-based loss function to penalize static or decaying
topics. We begin with a brief introduction to trend filtering.

4.1 Hodrick-Prescott (HP) Trend Filtering
Let {yt}Tt=1 be a univariate time-series which is composed

of an unknown, slowly varying trend component {xt}Tt=1 per-

turbed by random noise {αt}Tt=1. Trend Filtering is the task
of recovering the trend component {xt} given the observa-
tions {yt}. The Hodrick-Prescott filter is an approach to
estimate the trend assuming that it is smooth and that the
random residual is small. It is based on solving the following
optimization problem:

argmin
{xt}

1

2

T∑
i=1

(yi − xi)2 + λ

T−1∑
t=2

((xt+1 − xt)− (xt − xt−1))2

(6)
The first term tries to minimize the reconstruction error
while the second term penalizes the change in the underlying
time series over successive time points thus enforcing the
concept that the underlying trend component is smooth.

Let us introduce the second order difference matrix D ∈
R(T−2)×T such that Dii = 1,Di,i+1 = −2 and Di,i+2 = 1
for all i ∈ [T − 2]. It is easy to see that the solution to the
optimization problem of Equation 6 is given by:

x = [I + 2λD>D]−1y

where we use the notation y = (y1 . . . yT )>,x = (x1 . . . xT )>.
In the sequel, we use F to denote [I+2λD>D]−1, the linear
smoothing operator associated with the Hodrick-Prescott
Filter. Given the time series y, the Hodrick-Prescott (HP)
trend estimate simply is x = Fy. Figure 2 captures the
notion of Hodrick-Prescott trend filtering where a smooth
reconstruction of the observed signal is demonstrated for
different values of the parameter λ. In our experiments, we
use λ = 10.

4.2 Loss Function for Emerging Trends
Let x = Fy be the HP trend of the time series y. Let
D be the forward difference operator, i.e., the only non-zero

entries of D are: Di,i = −1 and Di,i+1 = 1. If z = Dx, then
zi = xi+1−xi reflects the discrete numerical gradient in the
trend x. Given zi, we define a margin based loss function
(the `2 hinge loss), L(zi) = ci max(0, ν − zi)2. If the growth
in the trend at time i is sufficient, i.e., greater than ν, the
loss evaluates to 0. If the growth is insufficient, the loss
evaluates to ci(ν−zi)2 where ci is the weight of timepoint i.
We observed experimentally that the best results are given
by weights ci’s which typically increase with i. For a vector
z, the loss is added over the time components. In terms of
the original time series y, this loss function is,

L(y) =

T−1∑
i=1

ci max(0, ν − (DFy)i)
2 (7)

Optimization Problem: As documents arrive over t ∈
{1, 2, . . . T}, we use S to denote a T × N time-document
matrix, where S(i, j) = 1 if the document j has time stamp
i. Noting that each column w of W, denotes the document
associations for a given topic, Sw captures the time series of
total contribution of the topic corresponding to w, which is
analogous to the temporal profile of the topic and is expected
to rapidly grow for emerging topics. Finally, we concretize
(1) as the following optimization problem

argmin
W,H≥0

‖X−WH‖2fro + µ
∑

wi∈Wem

L(Swi) (8)

subject to constraints in equations 3 and 4. Note that the
sum in the penalization term only runs over the emerging
topic variables.

5. OPTIMIZATION ALGORITHMS
We approximate X as the sum of rank-one matrices wih

>
i

and optimize cyclically over individual wi and hi variables
while keeping all other variables fixed. This results in three
specific sub-problems, each of which requires an efficient pro-
jection of a vector onto an appropriate space. Optimization
of rank-one subproblems has been previously shown to be
very effective for standard NMFs [14, 7] and is also reminis-
cent of the K-SVD approach for dictionary learning [11].

Optimization over hi: Firstly note that since the regu-
larization term is independent of hi, it does not contribute
to this optimization problem. Holding all variables except
hi fixed and omitting additive constants independent of hi,

(8) can be reduced to argminhi∈C
∥∥R−wih

>
i

∥∥2

fro
where

R = X−
∑
j 6=i

wjh
>
j (9)

is the residual matrix independent of hi. Note that R is
the difference of a sparse matrix and rank one matrices.
While it can possibly be a dense matrix, we never need to
evaluate it explicitly. In particular, our algorithm only needs
to compute matrix vector products against R, namely

Rhi = Xhi −
∑
j 6=i

wj(h
>
j hi) and

R>wi = X>wi −
∑
j 6=i

hj(w
>
j wi)

We use sparse matrix computations to evaluate Xhi and
X>wi thus allowing us to efficiently compute the updates
without evaluating R explicitly.



Algorithm 1: Online Learning Algorithm for Topic Evo-
lution and Emergence.

Input: New data X(t) ∈ RN(t)×D, Old data
X(t− ω + 1, t− 1), Previous topic matrix H(t− 1) of
size K(t− 1)×D, Emerging Topic Bandwidth B,
Hyperparameters: Evolution δ, Emergence µ, Hinge ν.
Output: W(t) ∈ RN(t)×K(t), H(t) ∈ RK(t)×D

ε = 10−6

Set K(t) = K(t− 1) +B
Define X = X(t− ω + 1, t) ∈ RN×D
Initialize W = Winit,H = Hinit where
Winit ∈ RN×K(t),Hinit ∈ RK(t)×D (details in Section 5).
while not(converge) do

for i = 1, . . .K(t) do
if i ≤ K(t− 1) then
Rhi = Xhi −

∑
j 6=iwj(h

>
j hi)

Evolving wi: wij = max
(

0, 1
‖hi‖2

(Rhi)j
)

.

else
Emerging wi (use Projected Gradient):

wi = argminw≥0

∥∥w −Rhi/ ‖hi‖2∥∥2
+

µ

‖hi‖2
∑T−1
j=1 cj max(0, νj − q>j wi)

2 (see Section 5).

end if
end for
for i = 1, . . .K(t) do
R>wi = X>wi −

∑
j 6=i hj(w

>
j wi)

if i ≤ K(t− 1) then
lij = max (0,hij(t− 1)− δ),
uij = min (hij(t− 1) + δ, 1).
Evolving hi (Simplex projection with box
constraints):

hi = argminh∈C1

∥∥h−R>wi/‖wi‖2
∥∥2

where C1 = {h : h ∈ ∆D, lij ≤ hj ≤ uij}.
else

Emerging hi (use Simplex Projection):

hi = argminh∈∆D

∥∥h−R>wi/‖wi‖2
∥∥2

end if
end for
Convergence Check: Relative change in Objective
value < ε

end while
H(t) = H and W(t) is last N(t) rows of W.

Simple linear algebraic operations yield that the above is
equivalent to

argmin
hi∈C

∥∥∥hi −R>wi/‖wi‖2
∥∥∥2

(10)

Note that the domain of dependence C changes according
to different constraints on hi depending on whether it is an
emerging or evolving topic.

Evolving hi: For an evolving topic, the optimization
needs to be performed under the smoothness and the nor-
malization constraints ((4) and (3) respectively). Thus the
optimum h?i is obtained by optimizing the above objective
over the set C = {hi : hi ∈ ∆D, lj ≤ hij ≤ uj} for appropri-
ate lower and upper bounds lj and uj determined by (4).
This is equivalent to a projection onto a simplex with box
constraints. Adapting a method due to [22], we can find the

minimizer in O(D) time i.e. linear in the number of coordi-
nates.

Emerging hi: For an emerging topic, we do not have the
smoothness constraints and the domain C = {hi : hi ∈ ∆D}
is just the D dimensional simplex. The optimization (10)
becomes equivalent to a projection onto the simplex ∆D.
The same algorithm [22] again gives us the minimizer in
linear time O(D).

Evolving wi: When wi ∈Wev, the regularization term
in (8) does not contribute and the corresponding optimiza-
tion problem boils down to

w?
i = argminwi≥0

∥∥R−wih
>
i

∥∥2
. Similar to (10), simple al-

gebraic operations yield that the above minimization is equal
to the following simple projection problem,

argmin
wi≥0

∥∥wi −Rhi/ ‖hi‖2
∥∥2

.

The projection set now is just the non-negative orthant, for
which there is a closed form minimizer:
wij = max

(
0, 1
‖hi‖2

(Rhi)j
)

.

Emerging wi: When wi ∈Wem, the second term in (8)
is active and the corresponding optimization problem looks
like

argmin
wi≥0

∥∥∥R−wih
>
i

∥∥∥2

+ µL(Swi)

Omitting the terms independent of wi, simple algebra yields
that the above is equivalent to

argmin
wi≥0

∥∥wi −Rhi/ ‖hi‖2
∥∥2

+ µL(Swi)/ ‖hi‖2 (11)

Noting that we choose L to be the `2 hinge loss, (11) can be
rewritten as

argmin
wi≥0

∥∥wi −Rhi/ ‖hi‖2
∥∥2

+
µ

‖hi‖2
T−1∑
j=1

cj max(0, νj − q>j wi)
2

where q>j = (DFS)j,:, the jth row of DFS where the op-
erators are defined in (7) and (8) respectively. Assimilating
the µ/ ‖hi‖2 into the constant ci, the above optimization
problem can be written in the following generic form

min
w≥0

J(w) where

J(w) =
∑
i

max (0, ci(νi − 〈w,xi〉))2 +
λ

2
‖w −w0‖2 (12)

where w0 refers to the term Rhi/ ‖hi‖2. Note that this is
the same as the L2-SVM optimization problem with addi-
tional non-negativity constraints on wi and the regularizer
measuring distance from the vector w0 instead of the origin.

This objective is minimized using a projected gradient al-
gorithm (due to the non-negativity constraint) [19] on the
primal objective directly, as it is smooth and therefore the
gradient is well defined. The update is given by

w(k+1) =
∏

(w(k) − ηk∇J(w(k)))

where
∏

is the projection operator
∏

(s) = max(s, 0) and

∇J(w(k)) = −2
∑
i

max
[
ci
(
νi −

〈
w(k),xi

〉)
, 0
]
xi

+λ(w(k) −w0)



The main trick lies in choosing the best rate ηk at the kth

step. Following [19], we start with η0 = 1 and at every step
hot start ηk = ηk−1. If ηk satisfies

J(w(k+1))− J(w(k)) ≤ σ
〈
∇J(w(k)),w(k+1) −w(k)

〉
(13)

we continuously increase ηk ← ηk/β as long it satisfies (13).
If ηk initially does not satisfy (13), we continuously decrease
ηk ← ηkβ until the condition is satisfied. For our experi-
ments, we choose β = 0.05 and σ = 0.01.

Our online learning algorithm can now be composed as in
the table labeled Algorithm 1.

Initializations: Note that in the algorithm above, Hinit =(
Hev

Hem

)
where Hev, the evolving set is initialized from

H(t− 1) and Hem is initialized to random distributions.

The corresponding parts of Winit =

(
W11 W12

W21 W22

)
are

initialized in the following way: W11 is extracted from pre-
vious runs (previous association of old documents with exist-
ing topics), W12 = 0 (old documents have weak association
with emerging topics), W21 optimizes

argmin
Ŵ≥0

‖X(t)− ŴHev‖2fro

In other words, existing topics are allowed to first recon-
struct new documents. Finally, W22 is chosen to be the
columns of W corresponding to emerging topics where W
is chosen randomly and scaled appropriately with

α = argmin
β>0

‖X(t)− βWHinit‖2fro

(see [14] for simple expressions for α).
Convergence: Using a general result on convergence of

Block Coordinate Descent, from [3], we can show that the
limit point (W∗,H(t)) generated by algorithm 1 is a sta-
tionary point of the objective function (1). This follows
from the uniqueness of the projection onto a closed convex
set (simplex, or simplex with box constraints) and the strict
convexity of Eq. 12.

6. PERFORMANCE EVALUATION
We conducted a comprehensive empirical evaluation of

our system on both traditional topic detection and track-
ing datasets comprising of streaming news stories, as well as
a twitter stream filtered for tweets relevant to IBM that was
collected over a span of 6 weeks.

It should be noted that the goal of our experiments is
to empirically understand the effectiveness of the tempo-
ral regularizers. As a result, most of our experiments try to
demonstrate the role of these temporal regularizers on tradi-
tional news datasets as well as twitter streams as opposed to
exhaustive comparison with existing TDT algorithms. How-
ever we still perform comparisons with a simple baseline
TDT model to put our models into perspective. We begin
with a discussion on appropriate evaluation metrics, some
of which are new to the best of our knowledge.

6.1 Metrics and Methodology
For performance evaluation, we assume that documents

in the corpus have been manually identified with a set of E
events. For simplicity, we assume that each document i is
tagged with a single, most dominant event that it associates

with πtrue(i) ∈ {1 . . . E}. In the description below, we call
these human labeled topics as events or “true topics” and
assume them to be the ground truth.

Microaveraged F1: This measure has been commonly
reported in topic detection and tracking (TDT) literature
(see, e.g., [6]). Let us assume that the system generates S
topics where in general S 6= E i.e., the system is allowed to
generate any number of topics. We first construct the E×S
confusion matrix CM between events and system topics, i.e.,
CMe,s is the number of documents that were tagged e by
the human and tagged s by the system. From this matrix,
for each event e, we identify topk(e) – the set of top-k most
frequently co-occuring system topics. We can then compute
the microaveraged F1 measure as follows:

Precisionk =

∑E
e=1 |Dtrue(e) ∩Dsystem(e)|∑E

e=1 |Dsystem(e)|
(14)

Recallk =

∑E
e=1 |Dtrue(e) ∩Dsystem(e)|∑E

e=1 |Dtrue(e)|
(15)

F1k =
Precision ∗Recall
Precision+Recall

(16)

where Dtrue(e) is the set of documents human-tagged e and
Dsystem(e) is the set of documents system-tagged with a
topic in topk(e), |·| denotes the cardinality and ∩ denotes in-
tersection operators on sets. Note that while k in topk is typ-
ically chosen to be 1, higher values may also be meaningful
to study particularly when multiple system topics attempt
to capture the same semantic event. Also note that the F1
score also implicitly measures topic continuity which is im-
portant in providing a stable, consistent association across
time between events and system topics.

Miss Rate @ First Detection: This measure attempts
to intuitively capture the following notion: how much of an
event has been “missed” before the system is able to commu-
nicate its existence to the user via the word-distribution of
a topic. It is a direct measure of the quality of an online
topic detection model to serve as an early warning system
for emerging themes. To compute this measure, we find
the first detection timepoint: the earliest timepoint when
the word-distribution of a system generated topic gets suf-
ficiently near the word distribution of the event e (which is
itself evolving temporally). We then compute the percent-
age of documents tagged with e that have streamed away
prior to first detection. This fraction is called the miss rate
@ first detection. To operationalize this measure, we define
the following:
(a) Word distribution of an event e at time t: the normal-
ized centroid of all documents on event e upto time t. Note
that this distribution is also obtained from the solution to
the optimization problem

Htrue(t) = argmin
H≥0,H1D=1E

‖X(1 : t)−WtrueH‖2fro

where Wtrue is simply the matrix encoding for πtrue, i.e.,
Wtrue(i, e) = 1 if πtrue(i) = e and 0 otherwise. Htrue(t)
serves as a proxy for the word distributions of the true top-
ics.
(b) Similarity measure for Topic nearness: Given two dis-
crete distributions p and q, we use the Jensen-Shannon Di-
vergence (JSD) as a measure of topic proximity,

JSD(p,q) =
1

2
(KL(p||m) +KL(q||m))



Figure 3: Metrics for TDT2 (note that F1 score for independent models (not plotted) is 0.21).

where m = 1
2
(p+q). Other measures (KL-divergence, Sym-

metric KL-divergence, Overlap in top words etc) are also
possible. However, we chose JSD because it is always nu-
merically well defined and bounded between 0 and 1.
(c) First detection Time for an event e is defined as:

tdetect(e) = argmin
t

[
t : min

s
JSD (htrue(e; t), hsys(s; t)) < θ

]
where θ is a detection threshold and htrue(e; t) is the word
distribution for event e at time t i.e. the row corresponding
to event e in Htrue(t) , and hsys(s; t) is a row of H(t), i.e.,
a system topic s at time t. Hence, tdetect simply measures
the first timepoint at which a system topic comes θ-close to
an event as measured by JSD. In our experiments, we either
set θ to a small value (0.2) or study variation with respect
to its choice. The miss rate for event e can now be defined
as:

|d : d ∈ Dtrue(e), timestamp(d) < tdetect(e)| ∗ 100

|Dtrue(e)|
(17)

We study miss rates for individual events or report an aver-
age across all events.

Topic Continuity: We adapt a direct measure of topic
continuity suggested in [6]. This measure essentially reports
the JSD between word-distributions in consecutive time-
points both for events (true topics) as well as for system-
topics. It therefore measures temporal smoothness in topic
distributions.

Emerging Bandwidth: The topics in the emerging set
can a) either all become part of the evolving set going for-
ward in time, b) can be manually selected with some of them
being discarded as noise by the user or c) can be selected
using criteria such as net current strength (sum of the doc-
ument weights of a topic from the corresponding column of
W). In our experiments, we choose (a) and retain all topics
in the emerging set.

6.2 Threshold Based TDT model
We adopt a simple baseline model (Threshold Based TDT)

based on a body of work in topic detection [1, 8] which cor-
responds to one of the classic topic detection frameworks.
We adapt these body of algorithms for comparison to our
experimental setup by using analogous concepts like adhoc
period and emerging topics. In particular, we learn an ini-
tial set of topics by k-means clustering of the documents over
an adhoc period. New documents then stream in one time
unit at a time and if their similarity to the existing topics
exceed a certain threshold (Yes/No threshold), they are

allocated to those topics. We also incorporate adaptation [8]
so that if the similarity of an incoming document to a topic
exceeds a certain adaptation threshold τ , we modify the
corresponding cluster (topic) center to incorporate the effect
of the new document. The threshold values are treated as
tunable parameters. The remaining documents which are
not similar to the existing topics are then considered as be-
longing to emerging topics. We perform another k-means
clustering to cluster these documents into a set of emerging
topics. The documents which are very far from these clus-
ter centers are assigned to singleton topics. Similar to our
temporal model, the emerging topics are absorbed into the
evolving set going forward in time.

6.3 TDT2 Dataset
Our first dataset is drawn from the NIST Topic Detection

and Tracking (TDT2) corpus2 which consists of news sto-
ries in the first half of 1998. In our evaluation, we used a set
of 9394 documents represented over 19528 terms and dis-
tributed into the top 30 TDT2 human-labeled topics over
a period of 27 weeks. We choose the hinge parameter to
be ν = 20 and emerging bandwidth of 2 per week for this
dataset. In our experiments, we use a sliding window of
ω = 4 weeks. The left panel of Figure 3 shows tracking per-
formance (F1) as a function of the evolution parameter δ
for various values of µ. When δ = 0, the system freezes a
topic as soon as it is detected not allowing the word distri-
butions to change as the underlying topic drifts over time.
When δ = 1, the system has complete freedom in retrain-
ing topic distributions causing no single channel to remain
consistently associated with an underlying topic. It can be
seen that both these extremes are suboptimal. Tracking is
much more effective when topic distributions are allowed to
evolve under sufficient constraints in response to the statis-
tics of incoming data. Moreover, the presence of emergence
regularizer µ > 0 tends to lead to higher F1-score also. In
the middle panel of Figure 3 we turn to the miss rate at
first detection. Higher values of µ typically reduces miss
rates helping emerging topics to be detected early. As δ is
increased, topics become less constrained and therefore pro-
vide additional bandwidth to drift towards emerging topics,
therefore lowering the miss rate curves. However, this comes
at the price of reduced tracking performance. Thus, for a
fixed amount of available topic bandwidth (which also cor-
responds to user information overload), there is a tradeoff
between tracking and early detection that can be navigated

2http://www.nist.gov/speech/tests/tdt/tdt98/index.htm



with the choice of µ and δ. The rightmost panel of Figure 3
shows topic continuity. Choosing δ = 0 leads to no evolution
of word distributions while δ = 1 can lead to abrupt changes
than can cause user confusion. For other values of δ we see
that the system allows drift that is of the same scale as the
drift in the true word distributions. Figure 3 also plots the
metrics for a simple online methodology where a fresh NMF
is learnt at every timepoint over all the data seen so far,
independent of previous runs. This model is labeled inde-
pendent in the Figure. As can be seen, independent runs
lead to high miss rate (see middle panel) since small emerg-
ing topics can be swamped by the goal of reconstructing the
ever expanding set of historical documents. Due to complete
temporal independence, no system topic can maintain a sta-
ble association with an event leading to low F1 score (0.20,
not plotted in the left panel) and high temporal discontinu-
ity (see right panel). In Figure 4, we see that, as expected,
training online models across short sliding windows takes
much lesser time overall than training fresh batch models at
every timepoint.

Figure 4: Training time on TDT2

We perform baseline experiments with the Threshold Based
TDT model over the TDT2 dataset. Due to space con-
straints, we just report the tracking performance using F1
score (left panel on Figure 5) as a function of the Yes/No
threshold for various values of the Adaptation threshold, τ .
The F1 scores obtained by our temporal model are clearly
much better than the simple baseline.

Figure 5: Metrics for TDT-Adapt: F1 score on
TDT2 and Twitter

6.4 IBM Twitter Archive
We used the Twitter Search API to collect all tweets men-

tioning“IBM”in the time period Dec 21, 2010 to Feb 2, 2011.
Our dataset comprises of 198029 tweets spread over 43 days.

The first 7 days are used to build an initial adhoc model after
which the data is streamed into our models for online anal-
ysis. In order to facilitate quantitative benchmarking, we
labeled approximately 23% of this data in a semi-automatic
fashion. First, we learnt a batch NMF model over the entire
dataset with 100 topics. From this model, we identified 10
salient events in this time period concerning IBM, listed in
the table below together with an estimate of date of peak
strength from the model.

Table 1: 10 events comprising roughly 23% of 198029
tweets between Dec 21, 2010 and Feb 2, 2011.

ID Event Size Peak Date
1 Lotusphere 2011 Conference 5020 Jan 31, 2011
2 Watson Jeopardy Contest 16388 Jan 14, 2011
3 Graphene Transistors 874 Jan 24, 2011
4 IBM Patents 2459 Jan 10, 2011
5 IBM Virtual Desktop Offering 1889 Jan 24, 2011
6 IBM Cloud Computing Data Center 2823 Jan 26, 2011
7 IBM Centennial 2558 Jan 22, 2011
8 IBM Quarterly Earnings 6944 Jan 18, 2011
9 IBM Analytics Study 3413 Jan 14, 2011
10 IBM ARM Partnership 3168 Jan 20, 2011

Several topics in the batch model were found to cover
these events and induced a partial clustering of tweets which
was treated as ground truth. Note, the online model needs
to make a real-time judgement of emerging topics and on-
line tracking of evolving ones, and does not have the ben-
efit of retrospective hindsight that the batch model does.
It is important to note that our online models are trained
on the entire dataset, and only the evaluation is restricted
to these labeled events. In other words, these events need
to each be teased apart from the entire data collection as
they emerge. These 10 events are quite diverse and cover
the victory of the IBM Watson supercomputer in a practice
Jeopardy! round in January, IBM’s quarterly earnings state-
ment, announcements such as creation of the largest cloud
computing data center in Asia and a new virtual desktop of-
fering, new partnerships, market studies, patent leadership,
centennial celebrations and super fast Graphene transistors.
In our empirical study, we fixed the hinge parameter ν = 20,
evolution parameter δ = 0.001, sliding window of one week
(ω = 7) and emerging topic bandwidth to be 4. regular-
ization. Figure 6 shows that the miss rate at first detection

Figure 6: Miss Rate at First Detection as a function
of Detection Threshold on IBM Twitter data

curve as a function of detection threshold (θ in Equation 17)
is significantly lower when the emergence regularizer is used.

http://www-01.ibm.com/software/lotus/events/lotusphere2011/
http://www-943.ibm.com/innovation/us/watson/
http://www-03.ibm.com/press/us/en/pressrelease/29343.wss
http://www-03.ibm.com/press/us/en/pressrelease/26471.wss
http://www-03.ibm.com/press/us/en/pressrelease/33445.wss
http://www-03.ibm.com/press/us/en/pressrelease/33447.wss
http://www-03.ibm.com/press/us/en/presskit/32887.wss
http://www-03.ibm.com/press/us/en/pressrelease/33414.wss
http://www-304.ibm.com/businesscenter/cpe/html0/209960.html
http://www-03.ibm.com/press/us/en/pressrelease/33405.wss


Table 2: Tracking Performance on Twitter
top1 top5

Measure µ = 0 µ = 1000 µ = 0 µ = 1000
Precision 92.10 91.50 71.03 82.09

Recall 36.72 30.73 65.05 62.01
F1 52.51 46.00 67.91 70.65

In Figures 7, 8 we see the effect of emergence regularization:
on several events, the online model with µ = 1000 shows a
much sharper dip (see bottom panel for each event) as com-
pared to µ = 0 in terms of JSD with respect to the true
word distribution, around the time the event emerges (see
top panel for each event). These results clearly show the ef-
fectiveness and potential value of emergence regularization.
The training time is 3.8 minutes per day for µ = 0 and 4.5
minutes per day for µ = 1000 on a commodity desktop run-
ning MATLAB. In the Table 2, we report F1 scores at k = 1
and k = 5 respectively. We see that the models tend to have
high precision and in particular, the presence of the emer-
gence regularizer also significantly improves precision when
upto 5 best matched system topics are associated with each
event. Finally, in Figure 9, we show a visualization of topic
temporal rivers [24] populated by keyword clouds (the words
with highest mass) associated with system topics generated
by our model. We show two different time points each span-
ning 1 week that has some coverage for most of the events.
We see that the system is able to communicate the semantic
essence (in terms of words) as well as the temporal profile
of each event very effectively.

We perform baseline experiments with Threshold Based
TDT as described in section 6.2 for both k = 1 and k = 5
just like our model. For k = 1, the maximum F1 score
for the thresholds considered is 41.12 obtained for precision
and recall values of 71.65 and 28.83 respectively. The cor-
responding numbers for k = 5 is F1 of 48.16 with precision
39.30 and recall 62.19 respectively. We plot the F1 score
in the same way as for the TDT2 dataset for the k = 1
case(Figure 5 right panel).

7. CONCLUSION AND FUTURE WORK
We have developed a new framework for modeling the

evolution of topics and aiding the fast discovery of emerging
themes in streaming social media content. We have shown
the effectiveness and value of novel temporal regularizers
in analyzing twitter streams. There are several avenues for
future work including a detailed large-scale empirical study
of the interplay between the model parameters as well as
the tradeoff between evolution and emergence, coming up
with convex formulations to avoid local minima problems
possibly using nuclear norm regularization[17], and effective
means to do model selection in the online setting. Other
fascinating directions include incorporating topic volatility
into the evolution constraints, and building sparser models
using l0/l1-regularizers.
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